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Startups commercializing science-based innovations are crucial for tackling pressing chal-
lenges, yet, in critical sectors such as energy, industrials, and materials, entrepreneurial activity
remains limited. This paper investigates whether weak value capture at exit constrains these
ventures. I estimate value creation and capture in startup acquisitions by combining acqui-
sition prices with acquirer stock returns, adjusting for market noise to isolate the economic
signal attributable to the acquisition. Science-based startups capture 46 cents per dollar of
acquisition-induced surplus, compared to 61 cents for non-science startups—a 24% penalty.
Conversely, they create 20% more joint surplus, consistent with continued entry despite the
capture penalty. To explain these patterns, I examine a central mechanism: the structure of a
startup’s exit conditions. I argue that science-based startups face thinner, more concentrated ac-
quisition markets and limited ability to scale independently, features that weaken the startup’s
bargaining power. Indeed, I find that science-based startups face up to 40% fewer potential
acquirers, who are 53% larger on average, and that their value capture is more sensitive to ac-
quirer concentration. Concentrated markets have a dual effect: large incumbents enable greater
surplus creation, but also shift bargaining power away from startups, allowing acquirers to ex-
tract most of the gains from innovation. Finally, I find that the capture penalty diminishes
when startups can scale commercialization independently. The results suggest that constrained
exit environments limit returns to science-based entrepreneurship, highlighting the importance
of competitive acquisition markets, markets for technologies, and alternative commercialization
pathways in incentivizing upstream innovation.
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1 Introduction

Recent research has drawn attention to the limited entrepreneurial activity surrounding science-
based technologies in critical sectors, despite their potential to address pressing social challenges.1

For example, Lerner and Nanda (2020) document that between 2015 and 2019, startups in telecom-
munications, networking, computer hardware, semiconductors, materials, and energy industries,
distinguished by their heavy reliance on scientific research, received only 5 percent of total Venture
Capital (VC) investment, with the majority of funds flowing to software, consumer, and business
products and services.

Most current explanations for the limited scale of science-based entrepreneurship focus on the
determinants of value creation, suggesting that these ventures generate less economic value through
commercialization than their counterparts. One central argument, for instance, is that weak or
uncertain market demand constrains the commercial potential of science-based innovations (e.g.,
Van den Heuvel and Popp, 2023), thereby limiting the returns that ventures can ultimately deliver.
Indeed, empirical evidence shows that innovation in these areas is often constrained by demand
conditions and that shifts in demand can incentivize upstream innovation: Popp (2002) finds that
rising energy prices lead to more energy-saving innovations; Aghion et al. (2016) show that higher
fuel prices shift innovation by firms in the auto sector toward cleaner technologies; and Acemoglu
and Linn (2004) document that increases in potential market size, driven by demographic shifts,
affect pharmaceutical innovation.

A related view holds that science-based innovations often face high financing costs due to their
need for significant upfront capital, high market and technical uncertainty, and long development
timelines before reaching commercial proof-of-concept (Hall and Lerner, 2010; Kerr and Nanda,
2015). This has been rationalized as rigidity in experimentation (Kerr et al., 2014), which raises
the cost of capital, lowers the option value of investment, and reduces the risk-adjusted expected
returns from such ventures (Ewens et al., 2018; Nanda and Rhodes-Kropf, 2017).

This paper poses and empirically tests a complementary explanation for this limited activity:
a problem of value capture. Science-based ventures can be both economically and socially valuable
due to their novelty, technological advancements, and potential market impact. Yet, they may
systematically struggle to capture the value they create at the point of exit. Under the current se-
quential innovation ecosystem, these startups typically conduct early-stage R&D and subsequently
transfer the technology to incumbents, who hold the complementary assets required for large-scale
commercialization (Arora et al., 2020; Kolev et al., 2022; Teece, 1986). The private returns to
entrepreneurs and investors, which motivate initial entry and investment, are realized at this trans-
fer stage and depend not only on the total value created—i.e., the joint surplus generated upon

1Entrepreneurship is an important driver for economic growth (Kortum and Lerner, 2000; Samila and Sorenson,
2011). For example, some estimates suggest that formerly VC-backed startups, now publicly listed firms, accounted
for 41% of total U.S. market capitalization and 62% of corporate R&D in 2020 (Gornall and Strebulaev, 2021). In
addition to driving economic growth, science-based innovations often enable transformative improvements and, as a
result, are crucial for addressing unresolved, pressing social challenges (Akcigit and Kerr, 2018; Fleming and Sorenson,
2004; Dalla Fontana and Nanda, 2023).
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commercialization—but, crucially, on the share of that surplus retained by the startup (Arora
et al., 2024b; Green and Scotchmer, 1995; Scotchmer, 1996). When those returns are suppressed,
not because of weak market demand or financing costs, but because incumbents capture most of the
value, investment is distorted, shifting resources toward technologies with stronger prospects for
value capture and leaving economically and socially valuable innovations undeveloped (e.g., Gans
and Stern, 2000; Grossman and Hart, 1986; Holmstrom and Roberts, 1998; Lerner and Merges,
1998; Scotchmer, 2004).

In the energy sector, for example, novel photovoltaic chemistries developed by startups may
generate major efficiency gains with significant economic impact. However, the large-scale pro-
duction capabilities, distribution networks, and complementary technologies needed to bring these
innovations to market are typically held by large industrial manufacturers or utility firms—not by
the startups themselves (Kapoor and Furr, 2015). As a result, in an eventual acquisition of the
technology, incumbents are well positioned to extract most of the surplus originated from these
technical gains.

To date, little attention has been paid to the role that value capture plays in shaping the returns
to entrepreneurship and, in turn, the development and commercialization of certain innovations.
Empirical studies often overlook the distinction between value created and value captured, either
using, for example, acquisition prices as a proxy for value creation or abstracting from rent sharing
dynamics altogether. Aside from a few, relevant theoretical contributions (e.g., Arora et al., 2024b;
Gans and Stern, 2000; Green and Scotchmer, 1995; Phillips and Zhdanov, 2013), whether value
capture is systematically suppressed for certain types of innovations remains an open question—we
lack empirical evidence, especially across industries, and a clear understanding of the underlying
mechanisms.

In this paper, I study this question in three steps. First, I focus on a setting that both allows
for clean measurement and reflects the dominant exit route for science-based ventures: the transfer
of innovation through startup acquisitions (Ederer and Pellegrino, 2023).2 Within this setting,
I develop a novel measure at the startup level that estimates the joint surplus generated in an
acquisition (value creation) and how that surplus is divided between the startup and the acquirer
(value capture). Second, I use this measure to analyze how value creation and capture differ between
science-based and non-science counterparts. As introduced, this focus is motivated by the fact that
science-based ventures, some of which are referred to as Deep Tech, sit at the center of current
debates around innovation and industrial policy as well as long-term economic competitiveness given
their potential to tackle relevant societal challenges. Finally, I provide a theoretical explanation
and supporting empirical evidence for one central mechanism: thin acquisition markets and limited
ability to commercialize independently, i.e., weak outside options, constrain the bargaining power
of science-based startups at the point of exit. As a result, these ventures disproportionately face

2Other forms of commercialization, such as licensing agreements or collaborative arrangements with incumbents,
are also commonly used by startups developing advanced technologies (see, e.g., Gans et al., 2002; Hsu, 2006) and
may involve different value creation and capture dynamics. In this paper, however, I abstract from these alternative
pathways and focus exclusively on acquisitions.
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unfavorable exit conditions, allowing incumbents to extract most of the innovation’s value.
To develop the value creation and capture measures, I use data on all startup acquisitions

(M&A) conducted by U.S. publicly listed firms between 1990 and 2022. The primary data source
is PitchBook; after applying standard filters and cleaning procedures, the final sample includes
5,823 startup acquisitions. I use the acquisition price and accumulated private investment to
estimate the surplus captured by the startup, and the acquirer’s abnormal stock market return
around the deal announcement date to estimate the surplus captured by the incumbent—that
is, the incremental gains expected from integrating the target’s technology, conditional on the
incumbent’s complementary assets. The sum of these two components estimates the total joint
surplus generated by the transaction, while their relative magnitudes identify each party’s share.3

One limitation of stock market prices is that they are noisy, conflating the acquirer’s gains
from the acquisition with unrelated firm-level, industry, or macroeconomic events. To address
this issue, I adopt a parametric approach that refines surplus estimates by isolating the signal
from noise. I do so by adapting to the M&A context the methodology developed by Kogan et al.
(2017), modifying some of their core assumptions to account for the possibility that acquisitions
can lead to negative abnormal returns if investors perceive overpayment—driven, for example, by
high integration costs or organizational frictions (Benson and Ziedonis, 2010; Chondrakis et al.,
2021; Higgins and Rodriguez, 2006). To estimate these parameters, I complement the main data
with close to 108,000 additional acquisitions conducted by publicly listed U.S. firms, sourced from
Refinitiv SDC Platinum.

Next, I classify startups by their reliance on novel scientific discoveries. I define science-based
innovations as technologies that require substantial R&D and build on advances originating in fields
such as life sciences, chemistry, physics, or engineering (Fleming, 2001; Fleming and Sorenson, 2004;
Hall and Lerner, 2010). A science-based startup, accordingly, is one whose products or services
are rooted in such scientific knowledge, whether developed internally or sourced externally from
research institutions. To identify these firms, I use a large language model (LLM). The model,
Llama 3.3, processes unstructured text from diverse sources to classify the extent to which each
startup’s technologies draw on novel scientific research. This classification approach circumvents the
limitations of traditional science and innovation measures.4 Beyond manual validation, I validate
the LLM-based classification using patent-to-paper citation data, finding strong alignment where
data are available and supporting the accuracy of the model-based labels. I also conduct robustness
checks using alternative prompts, as suggested by Carlson and Burbano (2024), and classification
thresholds.

Results show that startups commercializing scientific innovations consistently capture less value
3The abnormal stock return reflects the market’s expectation of future cash flows from the integration of the

startup’s technology with the incumbent’s assets. Importantly, it incorporates beliefs about both technical feasibility
and market adoption at the time of the transaction, i.e., the risks.

4For example, patent-to-paper citations are widely used as a proxy for science-based innovation, but are are
especially incomplete and prone to measurement error in the startup context. Many startups either do not patent,
rely on trade secrecy, or hold patents assigned to external entities such as universities or investors, limiting the
precision of firm-level attribution (Graham et al., 2009; Bryan and Williams, 2021; Lerner and Seru, 2022).
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than non-science-based startups. On average, science-based ventures capture only 46 cents of ev-
ery dollar of surplus generated upon acquisition, compared to 61 cents for their non-science-based
counterparts—a 24% penalty. Furthermore, there is important cross-industry heterogeneity. Some
industries consist primarily of startups commercializing scientific innovations (e.g., biotechnology),
while others are dominated by non-science startups (e.g., software; consumer goods and services).
The highest capture penalty is experienced by startups in industries with a mix of both types,
such as energy (-36%), industrials, manufacturing, and materials (-36%), and hardware (-24%)—
industries precisely where concerns about a dearth of activity are particularly pronounced. Inter-
estingly, the lowest capture penalty is in the life sciences.5

It is worth noting that, from the startup’s perspective, the greater value capture penalty faced by
science-based ventures implies a higher entry threshold for commercializing scientific innovations.
This is because, as pointed out, entry decisions are based on expected private returns, which
depend on both the joint surplus and the share they are able to retain. That is, in equilibrium,
ventures with lower extraction rates should generate proportionally greater surplus in order to yield
comparable private returns across types. Indeed, I find that science-based startups in my sample
generate significantly more total value upon acquisition—an estimated 20% increase relative to
non-science counterparts. This highlights the economic importance of science-based ventures, but
also the selection at play: only those generating higher value can overcome limited capture and
attract resources.6

Why do science-based startups capture less value from their innovations, despite generating
substantially more? I argue that a central mechanism lies in the exit environment, which deter-
mines how ventures realize returns from their technologies. Startups typically face two exit routes:
(i) independent commercialization, scaling through the product market and often culminating in
an IPO, or (ii) acquisition by an incumbent through M&A. Under M&A, outcomes are in turn
governed by the market structure of the potential acquirers: the number, size, and capabilities of
incumbents able to acquire and commercialize the focal technology. Specifically, I argue that these
exit environment conditions differ systematically between science- and non-science-based ventures,
and that these differences help explain the observed patterns in value creation and capture I report.

With regard to the exit route of independent commercialization, the literature suggests that
5The life sciences appear to be a notable exception to the broader pattern of limited value capture in science-

based sectors. One possible explanation is that this domain benefits from institutional structures that mitigate core
frictions associated with uncertainty and commercialization. First, demand uncertainty is lower: the availability of
epidemiological and clinical data provides relatively clear signals about market need ex-ante. Second, technical risk
is partially externalized through the structured and well-subsidized process of clinical trials, which offer standardized
milestones (e.g., Phases 1–3) that reduce information asymmetries between developers and investors. These milestones
are often funded or de-risked by public institutions, effectively subsidizing not only early-stage science but also venture
capital and incumbent pharmaceutical firms. Additionally, the strength of patent protection in pharmaceuticals
supports a well-functioning market for technology, enabling licensing and acquisition at earlier stages and increasing
the likelihood that upstream innovators can realize returns (Arora et al., 2022). Taken together, these features suggest
that life sciences do not conform to the mechanisms that generate value capture challenges in other science-based
sectors—an exception that may help illustrate the rule.

6As such, it is important to note that these results may not necessarily generalize to the broader population,
particularly ventures acquired privately or those that failed before reaching exit.
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science-based ventures face greater challenges in scaling commercialization independently. The
specialized complementary capabilities they require—such as advanced manufacturing, distribu-
tion networks, regulatory expertise, or integration with related technologies—are costly to develop
internally and rarely available through market-based contracting (Ewens et al., 2018; Gans et al.,
2002; Kapoor and Furr, 2015; Marx et al., 2014; Moeen, 2017).7 At the same time, science-based
ventures also face systematically different acquisition market structures compared to their non-
science counterparts. The very same complementary assets needed to scale their technologies are
typically held by a small number of large incumbents (Adner and Kapoor, 2010; Aggarwal and Hsu,
2009; Teece, 1986), which have become increasingly concentrated over time (Klepper, 1996; Sutton,
1991, 2007; Ederer and Pellegrino, 2023). As a result, the pool of viable acquirers is often thin,
leaving startups dependent on a limited set of large firms that control access to commercialization.8

I formalize this mechanism through a simple conceptual framework of startup acquisitions,
drawing on auction theory and treating these structural differences in exit conditions as primitives
and thus starting points for the model.9 Because these primitives are well documented in the
literature—both theoretically and empirically—and are also supported by my data, I refer to them
henceforth as stylized facts for ease of exposition.10

The framework yields three sets of simple predictions regarding the main variables of interest,
value creation and capture. First, in concentrated markets where only a few large incumbents
are viable acquirers, startup acquisitions tend to generate substantial joint surplus—since these
incumbents access broader markets and are better positioned to realize the innovation’s potential—
but startups capture little of that value due to limited acquirer competition and weak bargaining
power. Second, in more fragmented markets composed of smaller or less capable acquirers, startups
may retain a greater share of the value through better bargaining, but total value is lower, as the
acquirer can only reach a limited portion of the market. Third, the ability of the startup to
scale independently acts as a critical outside option, conditioning this tradeoff. When credible,
it improves bargaining power and enables greater value capture, regardless of downstream market

7Contract manufacturing and other market-based (or publicly subsidized) complements lower the effective fixed
cost of commercialization when tasks are standardized across firms. If a specialized supplier can amortize large fixed
costs across many clients, the per-firm cost of accessing the capability falls from F to approximately F/N plus a
variable charge. This shifts the make-or-buy boundary: a startup that would otherwise face prohibitive in-house
investment can credibly scale via the market at much lower upfront cost. In bargaining terms, the outside option
improves (the firm can scale independently at lower expected cost), which raises the seller’s threat point and increases
capture in acquisition negotiations. By contrast, when tasks are highly idiosyncratic (high asset specificity), fixed
costs cannot be spread, outside options remain weak, and startups rationally accept lower prices rather than fund
the development of such capabilities.

8Additionally, the majority of science-based innovations, with the exception of biotechnology and pharmaceuticals,
face weak markets for technology that would otherwise provide a competitive market for early exits (Arora et al.,
2022).

9In this paper, I treat the startup’s ability to scale independently and the structure of the acquisition market
as exogenous. In practice, these factors may be endogenously determined by the nature of the innovation itself.
For example, prior research highlights how R&D intensity influence the structure of downstream markets (see, e.g.,
Cohen, 2010; Sutton, 1991).

10Although similar regularities have been documented in prior work, their broader generalizability remains uncertain
and warrants further validation across different empirical settings.
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structure.11 Importantly, note that the framework is agnostic to the nature of the commercialized
technology in and of itself; rather, it is the systematic differences in exit conditions between science-
based and non-science startups that drive the observed disparities in value creation and capture.

To characterize acquirer markets and test these predictions, I employ existing data on down-
stream market competition developed by Hoberg and Phillips (2016, 2025), and widely used to
assess competitive overlap, product-market rivalry, and acquirer similarity in studies of M&A and
vertical integration (e.g., Frésard et al., 2020). The dataset is based on a text-based analysis of
the product descriptions in firms’ 10-K filings, which are used to construct pairwise similarity
scores across all publicly listed firms. Firms are embedded in a high-dimensional product space,
where proximity captures the degree of overlap in product offerings. This allows me to identify, at
the firm-year level, the set of product-market peers for each acquirer, approximating the pool of
potential acquirers for a given startup at exit. I use this to measure both the thickness of the ac-
quisition market—the number of credible acquirers—and its concentration, based on their relative
size distribution.

Using these data, I start by documenting the set of stylized facts characterizing the exit environ-
ment of science-based startups. First, these ventures face systematically thinner acquisition markets
than their non-science counterparts. On average, the set of potential acquirers is 9% smaller, and
up to 40% smaller in sectors such as energy and manufacturing. Second, these markets are more
concentrated. The typical acquirer of a science-based startup is 53% larger in terms of market cap-
italization at the time of acquisition, reflecting the dominance of a few large incumbents with the
necessary complementary assets. Third, science-based ventures exhibit weaker independent scaling.
At exit, the median non-science startup generates 71% more revenue than the median science-based
one, underscoring the significantly greater constraints the latter face in scaling independently.

Most importantly, the empirical results align with the framework’s predictions, providing sup-
port for the proposed mechanism. I find that the size of the potential acquirer pool strongly predicts
the share of value captured by science-based startups. A one standard deviation increase in the
number of potential acquirers is associated with a 26% increase in value capture. In contrast, there
is no such effect for non–science-based startups, whose capture is insensitive to acquirer pool size.
This asymmetry is consistent with the model. Non-science startups typically have credible outside
options, making their capture less reliant on the structure of the acquisition market. For science-
based ventures, by contrast, weak outside options make the size and structure of the acquirer pool

11One could argue that ex-ante contracting could, in principle, mitigate rent-sharing issues, some times referred to
as hold-up (Grossman and Hart, 1986), by specifying the terms of transfer and division of surplus before investments
are made and uncertainty is resolved. However, such contracts are rarely feasible in the context of science-based
innovation. One central reason is, for example, the high degree of ex-ante uncertainty surrounding the final market
application and the identity of the most efficient commercializing acquirer (Bresnahan and Gambardella, 1998; Lerner
and Merges, 1998; Kapoor and Klueter, 2021; Gambardella et al., 2021). For example, a novel battery chemistry
may be applied for electric vehicles, grid storage, or emergency power supply in healthcare. This makes it difficult
to determine value at the time of agreement, define the relevant contingencies, and assign control rights, limiting the
scope for credible and enforceable contracts (Grossman and Hart, 1986; Holmstrom, 1989; Holmstrom and Roberts,
1998). Another important reason is the weakness of intellectual property rights, which limits the startup’s ability to
protect its knowledge in the absence of formal control or ownership, thereby reducing too the effectiveness of ex-ante
contracting (Arora and Merges, 2004; Gans and Stern, 2000; Hsu and Ziedonis, 2013).
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more consequential. Consistent with this interpretation, I find that revenue at exit accounts for
most of the observed variation. For example, when conditioning on startups with above-median
revenue, not only do value capture levels increase, but the difference between science-based and
non–science-based startups becomes statistically insignificant.

In terms of value creation, joint surplus indeed systematically correlates with the market struc-
ture of potential acquirers. For non–science-based startups, each decile increase in the number of
potential acquirers is associated with a 6.9% increase in value creation, consistent with the idea
that, in less-specialized markets, marginal acquirers tend to be larger and possess stronger commer-
cialization capabilities (Bresnahan and Gambardella, 1998; David and Nagaraja, 2004). In contrast,
for science-based startups, I find that value creation declines as the number of potential acquir-
ers increases. This may seem surprising at first, but it reflects the structure of many specialized
markets. In these sectors, a small number of large incumbents typically dominate and possess the
capabilities needed to commercialize advanced technologies (Klepper, 1996, 2002; Cohen, 2010).
When these top firms are not interested in acquiring, the remaining potential buyers are often
smaller companies in fragmented submarkets (Klepper and Thompson, 2006; Sutton, 1991, 2007).
These smaller firms face more limited demand and have fewer resources, reducing both their ability
to scale the innovation and their willingness to pay for it. As a result, as the number of potential
acquirers increases, their average size and commercialization capacity decline, lowering the value
ultimately realized by the startup.12

The findings have significant managerial and policy implications, and are further underscored
by recent evidence showing that large incumbents are increasingly withdrawing from core scientific
research activities in favor of deploying their downstream capabilities to commercialize innovations
(Arora et al., 2018; Fleming et al., 2019) and that market concentration in certain industries is
growing (e.g., Antón et al., 2024; Cunningham et al., 2021; Nanda et al., 2015). On the policy
side, distinguishing between value creation and value capture is essential for designing targeted
interventions, even if both problems can exist simultaneously. If the problem lies in value creation,
limited investment in science-based startups may be explained by low expected returns stemming
from high financing costs or weak demand. Under this view, underinvestment is intrinsic to the
innovation itself, rather than a consequence of structural dynamics of the ecosystem.13 To a certain
extent, and put simply, one could argue that even within an incumbent firm, such innovations
would face similar hurdles—low expected returns stemming from inherent features like uncertainty,
capital intensity, or long timelines. In this case, the issue is not who develops the innovation,

12For example, consider a startup developing a novel robotics component with potential applications in precision
manufacturing. The most relevant acquirers may be large multinationals such as Siemens or ABB. If those firms deem
the commercial opportunity too narrow or misaligned with their strategic focus, they may opt not to acquire. The
remaining interest may come from smaller, more specialized firms that operate in fragmented submarkets. These firms
face limited end-user demand and lack scale, thus generating lower surplus from the innovation and offering lower
valuations. These dynamics align with the broader literature on submarkets and innovation incentives, including
Klepper and Thompson (2006) and Sutton (1991, 2007).

13I abstract here from other structural frictions that may well play an important role too, such as those arising
from capital markets. For example, limited collateral for intangible assets and regulatory constraints on institutional
investors.
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but the nature of the innovation itself, which dampens incentives across the board. Along these
lines, Narain (2025) finds that venture funds and publicly listed firms that are research intensive
develop technologies with similarly short gestation periods, while government funding is more likely
to support the development of technologies with significantly longer timelines.

By contrast, if the problem lies in value capture, underinvestment stems not from the inno-
vation itself, but from firm boundaries and the structure of the innovation ecosystem, one that
requires coordination and transfer across multiple actors. Since entry decisions hinge on private re-
turns, distortions in rent sharing can misallocate innovative effort, causing economically and socially
valuable innovations to go undeveloped because the first innovator cannot earn an adequate return
(Arora et al., 2024a; Scotchmer, 1996, 2004). Therefore, policy should not only focus on boost-
ing value creation through instruments such as demand stimulation—e.g., carbon taxes, emissions
standards (e.g., Gerarden, 2023) and R&D subsidies (e.g., Howell, 2017)—, but also address how
this value is distributed between the parts involved in commercialization. In particular, fostering
more competitive markets for technology and acquisition markets, as well as enabling alternative
commercialization pathways that reduce reliance on dominant incumbents can help address these
frictions. Such pathways include, for example, shared manufacturing platforms, prototyping infras-
tructure (e.g., pilot plants), and access to specialized infrastructure in National Labs. For example,
in battery technology, a startup with modular production capabilities or access to shared facilities
such as those of the National Renewable Energy Lab (NREL) may not only face a clearer route to
market but also credibly threaten independent commercialization.

On the managerial side, the findings highlight the need for managers in both incumbent firms
and startups to explore practices that offset the adverse effects of a lack of outside options and
downstream market concentration. For example, startup managers and investors should consider
manufacturing and distribution approaches that signal the startup’s ability to scale independently.
This may include securing funding for production capacity or geographically locating infrastructure
near target customers to facilitate distribution and strengthen credibility.14 Moreover, if incum-
bents systematically suppress value capture for external innovators, they risk discouraging future
innovation, reducing the pool of technologies they depend on for long-term competitiveness and
growth. In sectors such as biotech, semiconductors, and advanced materials, where reliance on
external innovation is high (Arora et al., 2020), a constrained supply may force greater dependence
on internal R&D (Ceccagnoli et al., 2010). Thus, these dynamics underscore the importance of cor-
porate involvement in shaping upstream external innovation, whether through corporate venture
capital (Ceccagnoli et al., 2018; Ma, 2020), collaboration with public industrial infrastructure, or
other mechanisms, effectively balancing the short- long-run trade-off.

The paper contributes to our understanding of the structural barriers that limit the progress
of science-based innovations through startups. Prior work has highlighted factors such as market
demand (Dalla Fontana and Nanda, 2023; Van den Heuvel and Popp, 2023), capital intensity (Hall

14These considerations raise the question of whether, while necessary for startups to strengthen their bargaining
position, some of these investments are nonetheless socially inefficient (Arora et al., 2024b), especially if they duplicate
capabilities already held by incumbent firms.
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and Lerner, 2010), risk and experimentation (Ewens et al., 2018; Kerr et al., 2014; Nanda and
Rhodes-Kropf, 2017; Howell, 2017), and long time horizons (Narain, 2025) as key obstacles. This
paper extends that perspective by focusing on how surplus division in a sequential innovation
system suppresses startup returns (Arora et al., 2024a; Gans and Stern, 2000; Scotchmer, 1996)
while emphasizing the role of complementary capabilities that are often unavailable to startups but
critical for commercialization (Helfat and Lieberman, 2002; Kapoor and Furr, 2015; Teece, 1986).

The paper also contributes to the literature on startup modes of commercialization (e.g., Cecca-
gnoli et al., 2014; Gans et al., 2002; Marx et al., 2014), highlighting the relevance of independent
commercialization pathways not only in and of itself, but as a credible threat that may lead to bet-
ter terms in acquisitions and, thus, to a more competitive ecosystem. Moreover, the paper sheds
light on research on M&A and corporate strategy examining how deal-, firm-, and industry-level
factors shape acquisition outcomes (e.g., Barney, 1988; Capron and Shen, 2007; Feldman et al.,
2019; Kaul and Wu, 2016; Testoni, 2024; Villalonga and McGahan, 2005). It advances this liter-
ature by emphasizing how structural features of the acquisition environment—specifically, buyer
concentration and capability asymmetries—influence both value creation and the division of surplus
between acquirers and targets.

Finally, the paper contributes to the literature on innovation, competition, and downstream
market structure by providing novel empirical evidence on the structure of acquisition markets, con-
sistent with prior theoretical and empirical work (e.g., Cohen, 2010; Klepper, 1996; Sutton, 2007).
In doing so, it highlights how industry concentration—also at the center of antitrust debates—
not only raises concerns about consumer welfare, but can undermine innovation performance and
long-run technological progress (Federico et al., 2020; Segal and Whinston, 2007; Shapiro, 2025).

Methodologically, this paper first introduces an approach to distinguish between value creation
and value capture, enabling the analysis of rent-sharing dynamics in startup acquisitions and al-
lowing us to study questions that have received limited attention, as well as revisit established ones
through a new lens. Second, the paper introduces a novel approach using Large Language Models
and textual data to classify startups based on their reliance on scientific research, improving upon
traditional patent-based measures. Third, this paper develops a parametric approach to isolate the
market signal in acquisitions by publicly listed firms, adapting the methodology of Kogan et al.
(2017). While developed to study surplus creation and sharing in startup acquisitions, the method
can be broadly applied in studies of acquisitions using stock market reactions.

2 Conceptual Framework

The current innovation ecosystem is characterized by a sequential division of labor, in which dif-
ferent actors often specialize in distinct stages of technological development and commercialization
(Arora et al., 2018; Fleming et al., 2019). Startups typically develop early-stage technologies, which
are subsequently scaled and commercialized by incumbent firms possessing the complementary as-
sets necessary to fully realize the economic potential of these innovations (Teece, 1986). In this
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structure, most startups do not capture the returns from innovation through direct product market
competition, but rather by transferring their technologies to incumbents (Gans et al., 2002; Marx
et al., 2014), often via acquisitions (Andrews et al., 2022; Ederer and Pellegrino, 2023). As a re-
sult, the returns realized at the point of acquisition play a central role in shaping entrepreneurial
incentives (Scotchmer, 1996; Gans and Stern, 2000) and, thus, understanding how these are formed
in the first place is crucial to explaining why some industries or technologies attract more startup
activity than others (Arora et al., 2024a).

This section develops a theoretical framework that decomposes startup returns at acquisition
into two components: the total, joint surplus generated through commercialization (value created)
and the share of that surplus captured by the startup. I argue that these outcomes are, in part,
jointly shaped by the structure of the commercialization environment. Specifically, the number, size,
and capabilities of potential acquirers, as well as the viability of independent scaling by the startup.
I further pose that these structural features correlate with the underlying nature of the technology,
which motivates the main hypothesis of the paper: Science-based startups systematically differ
in both value creation and value capture due to thinner acquisition markets and weaker outside
options. The framework generates testable predictions about how value creation and capture vary
across different types of startups, which I later examine empirically using acquisition data.

2.1 Decomposing Startup Returns into Value Creation and Capture

To date, most research measures startup returns as the proceedings received at exit (e.g., acquisition
price) relative to accumulated investment and implicitly equates these returns with the economic
value the innovation creates. Consequently, most existing literature focuses on the determinants
of value creation to explain patterns of entry, investment, and growth, arguing that limitations
on value creation, such as weak demand, high risks, or high financing costs, reduce the expected
economic value of certain innovations and, thus, suppress returns.

Yet, theoretical accounts suggest that under a sequential innovation system, where innovations
must be transferred from an upstream to a downstream firm, returns may also be shaped by a
distinct factor: the ability of the initial innovator to appropriate the value their innovation will
create (Scotchmer, 1996, 2004; Arora et al., 2024b). In such a system, the innovator’s payoff
depends not only on the total value generated by the innovation when commercialized at scale, but
also on how that value is divided between the upstream and downstream parties. As such, even
when an innovation has the potential to create substantial value, the startup may capture only a
small share, with the majority appropriated by the incumbent that commercializes and diffuses the
technology to market.

This perspective implies that low observed returns may not only reflect limited value creation,
but also limited value capture—an important distinction with implications for how innovation in-
centives are understood. If returns are suppressed not because innovations lack value, but because
startups are unable to extract it, then entrepreneurial effort may systematically be misallocated
away from high-value but low-capture domains. Despite the significance of this distinction, empir-
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ical evidence remains limited on the extent to which different types of startups are able to capture
value, and on the mechanisms that determine that share.

In this paper, I take a first step toward addressing that gap by examining whether certain
innovations, particularly those grounded in scientific research, are systematically disadvantaged in
the share of value they extract at exit, and by exploring the mechanisms that account for this
variation. It is worth clarifying that the empirical focus of the paper is not on testing underinvest-
ment itself, but on measuring in the first place the joint surplus created at exit and its division
between the startup and the incumbent. Establishing whether certain types of innovations, partic-
ularly science-based ones, face systematically lower capture is a necessary precursor to evaluating
whether misallocation or underinvestment follows.

To formally examine these issues, I decompose the returns a startup gets from an acquisition
into two components. The first component is the total value that the innovation will create when
deployed by an incumbent. Although commercialization can generate several forms of value, such
as consumer surplus, knowledge spillovers, and broader social benefits, the relevant construct for
the purpose of this paper is the joint surplus (Vt), that is, the private economic surplus accruing to
the parties directly involved in commercialization. This is because this joint surplus, net of costs,
drives their incentives to enter, invest, and transact.15 Henceforth, I refer to this joint surplus also
as value created.

The second component is the share of this joint surplus that the startup captures, which I
refer to as value capture (λs). This share determines how much of the total joint surplus the
startup is able to extract, ultimately determining its private surplus—or, informally, its returns.
Put simply, the startup surplus (Vs) is a function of both the size of the pie (Vt), created through
the combination of the startup’s innovation and the incumbent’s complementary assets, and the
fraction of that pie the startup can extract (λs):

Vs = λsVt (Startup surplus) (1)

Because startups move first, selecting which technologies to develop, I pose that the expected
levels of both value creation (Vt) and value capture (λs) influence how talent and capital are allo-
cated across sectors and technologies. High expected creation combined with a large capture share
attracts entry and investment, while low creation or weak capture discourages effort. Crucially,
even when the expected value created is high, a low capture share for the startup can deter entry.
In such cases, limited appropriation by the initial innovator may prevent valuable innovations from
being pursued, leaving technologies that are both socially desirable and economically promising
under-exploited.

15While research suggests that entrepreneurs and scientists may be partially motivated by non-pecuniary consid-
erations such as social impact or recognition (Cohen et al., 2020; Sauermann and Cohen, 2010; Lazear, 2005), in this
paper, I adopt the view that entry and investment decisions are governed by expected economic rents. Furthermore,
this may be especially reasonable in a context where institutional venture capital plays a prominent role, since these
investors are subject to capital constraints and return expectations shaped by external stakeholders—most notably,
their limited partners.
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Figure 1 illustrates how startup surplus can reflect very different underlying economics, de-
pending on both the total joint surplus created and the share captured by the startup. Each bar
decomposes the value created in a startup acquisition into the portion captured by the startup and
that captured by the acquirer. The figure compares two cases. In the Software as a Service (SaaS)
example, the startup captures half of the joint surplus, while in the carbon technology example, it
captures a much smaller share. Looking only at startup surplus, one might infer that the innova-
tion is less valuable and expect capital and talent to flow toward sectors like SaaS, where startup
returns are higher. Likewise, a policymaker aiming to promote carbon-efficient technologies might
also view the low startup surplus as evidence of limited economic value, concluding that a carbon
tax could stimulate demand and, all else equal, raise joint surplus.
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Figure 1: Illustrative examples of joint surplus creation and division at acquisition. The figure illustrates how similar
observed returns can mask important differences in total value created and in the share captured by the startup, with
implications for how upstream resources are allocated across technologies.

However, looking at the full distribution of joint surplus reveals a different picture. In this
example, the carbon technology generates more total value than the SaaS one, but a dispropor-
tionately large share accrues to the acquirer. This distinction matters for both policy and manage-
ment. From a policy perspective, when most of the rents from an innovation flow to incumbents
at acquisition, stimulating downstream demand—such as through carbon taxes—may do little to
encourage upstream innovation in sequential innovation systems. From a managerial perspective,
entrepreneurs, investors, and managers operating in such environments must recognize that high
total value creation does not necessarily translate into high private returns, and may need to adapt
commercialization strategies to improve bargaining outcomes. In both cases, the challenge is not
only the amount of value created, but also the fraction that the initial innovator can extract.
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2.2 Determinants of Value Creation and Capture

2.2.1 Value Creation

This decomposition also offers a useful lens for understanding why startups may systematically differ
in both value creation and value capture at exit, and what mechanisms may drive these differences.
On the creation side, several factors can drive higher joint surplus. One key determinant is the
technical performance of the innovation at the time of acquisition which shapes the per unit value
delivered, either through increased willingness to pay by the end user or through reduced production
costs. Importantly, this technical performance implicitly reflects any technical risks that remain
unresolved, as performance is assessed relative to the degree of certainty with which it can be
realized in practice. As a startup develops its innovation and gradually resolves key technical
uncertainties, it reduces perceived risk, increasing the expected value of the innovation.16

A second important determinant of value creation is the size and structure of the addressable
market the acquirer can serve. Put simply, the total surplus generated depends on the per unit
value of the innovation multiplied by the scale over which that value can be realized. This scale is
shaped, in turn, by the acquirer’s market share, customer base, and overall competitive position.17

Likewise, note that the market structure of the downstream firms plays a critical role: even if an
innovation has broad applicability, the realized surplus will be limited if the acquirer operates in
a fragmented market and controls only a small share of potential end users. Thus, the surplus
induced by the transaction reflects not the full potential of the innovation, but only the portion
accessible to the specific acquirer.18

A third determinant is the capability of the acquirer, particularly the availability and qual-
ity of complementary assets needed to realize the innovation’s value. These include not only
production-related resources like manufacturing infrastructure, complementary technologies and
patent portfolios, and human capital, but also market-related capabilities such as regulatory ex-
pertise, distribution networks, branding, and customer relationships. If, for simplicity, one assumes
that the acquiring firm is the best available match—operating at or near the technological and
organizational frontier in the relevant complementary assets and capabilities—then, all else equal,
the joint surplus reflects the maximum value that can be realized from the innovation in its current
state. A well-matched acquirer can bring the technology to market more quickly, at lower cost, and

16For example, a carbon capture startup may initially face uncertainty over whether a novel chemical process
can reliably absorb emissions under variable industrial conditions. Once this technical challenge is resolved and
performance demonstrated under realistic scenarios, outside the lab, the innovation may experience a discrete increase
in its perceived value. In this way, development progress acts as a trigger for upward revisions in expected surplus,
as the probability of commercial success increases and required future investment decreases.

17Throughout the analysis, I abstract from the effects of acquirer market power in the traditional sense of markups
or output restrictions. While buyer market power may influence acquirer surplus, willingness to pay, and bargaining
dynamics, my focus is on how the ability to commercialize and scale a given innovation varies with market structure.
In this context, changes in realized value reflect differences in joint surplus rather than redistributive effects arising
from pricing power.

18Note that, as with technical risks, market risks such as uncertainty about demand volume, regulatory approval, or
end-use application, are embedded in the the value of an innovation at transfer. For example, a microbial treatment
in agricultural biotech may show strong technical performance, but if it is unclear whether it will be adopted in
large-scale commodity farming or niche markets, the expected value will reflect that uncertainty.
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at greater scale than a less capable one.19

2.2.2 Value Capture

On the capture side, the structure of a startup’s exit environment critically shapes how the joint
surplus generated by the innovation is divided between the startup and the acquirer. In acquisition
settings, this division is determined through a bargaining process, whose outcome depends on two
fundamental factors.

The first of these factors is the intensity of competition among potential acquirers. When the
pool of interested acquirers is broad and multiple incumbents actively bid for the asset, competitive
pressure drives up the acquisition price, enabling the startup to appropriate a greater share of the
surplus. By contrast, in thin markets with few bidders, the startup may face a dominant acquirer
with monopsony power, reducing its ability to negotiate favorable terms. The second factor is
the strength of the startup’s outside option. Specifically, its ability to continue developing and
commercializing the technology without being acquired. A credible outside option enhances the
startup’s bargaining position by allowing it to reject unattractive offers, irrespective of acquirer
competition. However, when such independent commercialization is infeasible, the startup becomes
reliant on acquisition, weakening its leverage and diminishing its share of the surplus.20

2.3 Science-based Ventures: Thin Acquisition Markets, Weak Outside Options

The discussion above highlights that value creation and capture are shaped by two key features
of the commercialization environment: (1) the structure of the acquisition market and (2) the
startup’s ability to scale independently. I now turn to the central premise of the paper: science-
based startups differ systematically from non-science-based startups along both features, and these
differences give rise to systematic variation in value creation and capture.

Science-based ventures are more likely to operate in concentrated acquisition markets, typically
characterized by a small number of large incumbents with the capabilities required to absorb and
deploy advanced technologies. At the same time, the specialized and infrastructure-intensive nature
of many scientific innovations often limits their ability to commercialize independently. These
systematic differences in exit conditions, I argue, generate distinct patterns of value creation and

19Other determinants also matter. For example, the commercialization horizon, imitation and competition, and
obsolescence risk influence the duration and magnitude of expected surplus. Innovations expected to generate rents
over a longer period, due to slower technological cycles or stronger intellectual property protections, create more
value than those likely to be displaced in the near term.

20While this paper focuses on structural determinants of value capture—namely, downstream market composition
and startup outside options—other factors may also influence the division of surplus in practice. These include,
for example, the negotiation skill and experience of the founding team and investors, information asymmetries, and
timing considerations such as urgency on either side of the deal. The bargaining process is also shaped by the
incumbent’s outside options, including the ability to develop a competing solution internally, acquire an alternative
target, or delay action until more information becomes available (Gans and Stern, 2010). These elements introduce
idiosyncratic variation in acquisition outcomes and may amplify or mitigate the effects of the underlying market
structure and outside options.
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capture between science-based and non-science-based ventures. In particular, they influence both
the total joint surplus realized at exit and the share of that surplus retained by the startup.

In this section, I formalize these claims into a set of stylized facts—drawn from the data and
consistent with prior literature—alongside theoretical propositions regarding patterns of value cre-
ation and capture. To do so, I develop a simple theoretical model of startup acquisition using a
second-price sealed-bid auction, a parsimonious framework for settings with offers, negotiations,
and competing bids. In the model, the incumbent with the highest valuation acquires the startup
and pays the second-highest bid, subject to the startup’s reservation value—its payoff from scaling
independently. Market structure and outside options enter as primitives, as reflected in the stylized
facts below (1, 2.1, 2.2, and 3 ). Furthermore, I model startup valuations as heterogeneous and
acquirer-specific, capturing heterogeneity in complementarities between the startup’s technology
and each incumbent’s capabilities. This framework yields equilibrium prices and the division of
surplus between the parties. Here I provide only the intuition and the propositions that form the
basis for the paper’s empirical tests; Appendix A provides full details on the model.

2.3.1 Differences in Acquisition Markets and Outside Options

Innovations differ fundamentally in their characteristics, shaping the challenges associated with
their development and commercialization. Science-based startups typically pursue complex, novel,
and uncertain innovations that depend on specialized capabilities and infrastructure to scale (Pisano,
1990; Gans and Stern, 2003; Henderson and Clark, 1990). Scaling these technologies, such as bio-
pharmaceutical compounds, novel materials, or energy storage systems, often require dedicated
advanced manufacturing, complex distribution networks, or regulatory expertise in order to realize
their potential (Teece, 1986). In contrast, non-science-based startups, such as those in enterprise
software or consumer products, are often easier to scale, less reliant on specialized assets, and cus-
tomizable and applicable across a broader range of contexts (Bresnahan and Gambardella, 1998).

This difference in technological characteristics gives rise to fundamental differences in the struc-
ture of the exit environment. In terms of exit via acquisition, science-based startups frequently
encounter a concentrated acquirer market characterized by a small number of large and dominant
firms, resulting from the fact that only a limited number of incumbents possess the specialized
complementary assets required to scale and profit from these innovations. This market structure is
not a reflection of the startups’ actions, of course, but stems from inherent industry dynamics tied
to the technologies they develop.

High R&D intensity and large, technology-specific sunk costs create entry barriers that give rise
to increasing returns to scale (Sutton, 1991; Cohen and Levin, 1989; Cohen and Klepper, 1996).
Because the fixed cost of, for example, building and operating laboratories or production facilities
does not fall proportionally with output, average costs decline for firms that can spread these
expenses over a larger revenue base (Gans and Stern, 2000). Potential entrants must incur the same
indivisible investments yet compete against incumbents that have already absorbed them, which
deters entry and leads to endogenous concentration. The resulting market structure is oligopolistic:
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only a few firms possess the cash flow, complementary assets, and cumulative know-how required to
finance continuing R&D and to integrate new technologies (Cohen et al., 1990; Cohen and Klepper,
1996; Sutton, 2007). Consequently, acquisition markets for complex, science-based innovations
are more likely to be thin, with just a handful of incumbents able and willing to absorb and
commercialize at large scale such technological advances.21

Conversely, non-science startups face a much broader and more competitive acquisition market
than science-based ventures, as the technology utility is not limited to a small, specialized group of
acquirers. Because their innovations have wide applicability across many use cases and industries
with little adaptation costs (Henderson and Clark, 1990; Bresnahan and Gambardella, 1998; Ewens
et al., 2018), a larger and more heterogeneous set of firms view them as complements. Potential
acquirers can range from small niche players to large incumbents in finance, healthcare, and retail,
reducing the degree of market concentration.22

Stylized Fact 1. Science-based startups tend to face more concentrated acquisition markets than
non-science-based startups, i.e., a smaller number of potential acquirers.

A feature of specialized technologies and concentrated markets is that, when a startup fails to
attract interest from dominant incumbents, it tends to face a fragmented set of smaller acquirers.
The specialized nature of the technology means that, if none of the large incumbents are willing
to acquire it, only the remaining, smaller firms operating within similar technological domains
are technically capable of doing so. These firms may be able to exploit and further develop the
innovation, but they have a narrower customer base and lack the scale and market access needed
to generate the same level of value as a large incumbent would. As Klepper and Thompson (2006)
and Sutton (2007) pose, when industries are composed of distinct submarkets with varying fixed
costs and competitive intensities, smaller firms may persist in niche segments, but their ability to
extract value from frontier innovations remains limited relative to dominant incumbents operating
at scale.23 For non-science-based startups, this structure does not hold. As the pool of potential

21While in the framework developed here I treat these exit conditions as exogenous, they are plausibly endogenous
to the nature of the innovation, consistent with models linking technical change to market structure (e.g., Sutton,
1991). The number and scale of potential acquirers, as well as the feasibility of independent scaling, are shaped
by the underlying characteristics of the technology. Innovations that require tightly integrated or highly specialized
complementary assets—common in science-based domains—tend to generate more concentrated downstream markets,
limiting the set of viable acquirers, who are often larger incumbents. These same characteristics also influence whether
critical complementary assets, such as manufacturing infrastructure or distribution networks, can be accessed through
arm’s-length transactions or must be developed in-house.

22Technologies may evolve along the specialization—generality tradeoff. Innovations that are initially specialized
can become more general-purpose as access to complementary assets improves, integration costs decline, and down-
stream demand becomes clearer (Bresnahan and Gambardella, 1998). For example, the rise of regional ecosystems,
such as the concentration of semiconductor design, manufacturing, and supporting services in Silicon Valley, can re-
duce commercialization frictions over time by making complementary assets more widely available (Saxenian, 1996).

23One may ask why large incumbents may pass on technologies that smaller firms are willing to acquire. This
could be due to a combination of economic and organizational factors. Economically, the replacement effect discour-
ages adoption when new technologies threaten to cannibalize existing products or revenue streams (Arrow, 1962).
Likewise, the innovation may also be poorly aligned with the incumbent’s existing asset base, limiting expected com-
plementarities and raising coordination costs (Teece, 1986). Organizationally, innovation myopia, internal incentive
structures favoring short-term performance, and a bias toward incremental improvements over disruptive change may
reduce willingness to invest in certain technologies (Christensen, 2015).
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acquirers expands, the average size—and especially the maximum size—of bidders increases. By
order-statistics logic, a larger and more heterogeneous pool, often spanning less concentrated or
adjacent industries, raises the likelihood of drawing a highly resourced incumbent. This increases
the expected scale of complementarities, increasing the startup’s value. In Appendix B, I provide
case examples to further illustrate these dynamics.

Stylized Fact 2.1. For science-based startups, an increase in the number of potential acquirers is
associated with a decrease in the average size of acquirers.

Stylized Fact 2.2. For non-science-based startups, an increase in the number of potential acquirers
is associated with an increase in the average size of acquirers.

In terms of independent commercialization, science-based startups are significantly less likely
to scale on their own, as the complementary assets required are costly to develop, rarely available
through contracting, and often co-specialized with incumbents following years of cumulative in-
vestment and organizational learning (Kapoor and Furr, 2015; Kapoor and Klueter, 2021; Moeen,
2017). As a result, the cost and risk of independent commercialization are high, making these ven-
tures more reliant on acquisition (Andrews et al., 2022). In contrast, non-science-based startups
face lower barriers to scale independently. Their technologies typically require less capital-intensive
infrastructure, allowing startups to grow in stages, with greater flexibility to experiment, iterate,
and adjust to market feedback (Ewens et al., 2018; Kerr et al., 2014; Koning et al., 2022)—making
independent commercialization more feasible and, in negotiations, a credible threat.

Stylized Fact 3. Science-based startups tend to face weaker options for independent commercial-
ization than non-science-based startups.

2.3.2 Differences in Value Creation and Capture

Combining the mechanics of value creation and capture described in the previous section with the
structure of the acquisition market and outside options, the resulting comparative statics follow.
As discussed, all else equal, the size of the acquirers in the acquirer pool affects value creation.
Larger acquirers can extract greater value from a given innovation, increasing total surplus. Thus,
I derive the following propositions:

Proposition 1.1. Science-based startups tend to generate greater joint surplus than non-science-
based startups, as their acquirers are typically larger incumbents more capable to fully realize the
innovation’s potential.

Proposition 1.2. For science-based startups, joint surplus declines as the pool of potential acquirers
increases, as additional acquirers tend to be smaller. In contrast, for non-science startups, a larger
acquirer pool increases the likelihood of attracting a large acquirer, leading to higher surplus creation.

Likewise, the number of potential acquirers, their size, and the feasibility of independent com-
mercialization influence the share of surplus the startup is able to capture. Thus:
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Proposition 2.1. Science-based startups face lower value capture because they tend to operate in
acquisition markets with a smaller pool of potential acquirers, which limits competition and reduces
their bargaining power at exit.

Proposition 2.2. For both science-based and non-science-based startups, value capture increases
with the number of potential acquirers, reflecting stronger competition among acquirers.

Proposition 2.3. The strength of the startup’s outside option mediates both the level and the sen-
sitivity of value capture to market structure. Startups with strong outside options—able to credibly
pursue independent commercialization—achieve higher baseline capture and are less sensitive to
the number of acquirers. Conversely, when outside options are weak, value capture is lower and
more responsive to acquirer competition; in this case, science-based startups exhibit a steeper slope,
indicating greater sensitivity to market structure.

Two mechanisms further explain Proposition 2.3. First, as bidder count rises, valuation disper-
sion is reduced, reducing the difference between the best and second-best offers and, thus, increasing
the startup surplus captured. Second, weaker external offers improve the credibility of the outside
option, strengthening bargaining power. However, in both cases, this higher capture comes at the
expense of lower value creation.

To illustrate the model’s central predictions, I run simulations calibrated to match the moments
in my data. Figure 2 summarizes the propositions described above by plotting the startup’s value
capture (left panel) and the joint surplus (right panel) as a function of the number of potential
bidders, separately for science-based and non-science-based startups. As shown in the results
section, the empirical patterns in my data closely align with the model’s predictions.
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Figure 2: The figure illustrates the model’s predictions based on simulations with moments matched to my data.
Panel (a) plots the value captured by the startup. Value capture increases with the number of bidders for both
startup types, consistent with greater acquirer competition. However, the slope is markedly steeper for science-based
startups, reflecting their lower reservation value, which heightens their dependence on external bids, and the smaller
dispersion in acquirers’ valuations. Panel (b) plots the value created (logged) as a function of the number of bidders.
For science-based startups, value creation decreases as the number of bidders increases due to a decline in average
acquirer size, which reduces both total surplus and willingness to pay. In contrast, value creation for non-science
startups increases with the number of bidders, as a larger pool raises the likelihood of matching with a high-value
acquirer.
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3 Data and Measurements

This section presents the data and measurement construction for the empirical analysis. Section 3.1
describes the methodology for estimating value creation and capture for each startup acquisition
in the sample; Section 3.2 describes the data sources, with the primary datasets drawn from Pitch-
Book, CRSP, and Refinitiv; Section 3.3 details the empirical procedure to estimate value creation
and capture. Finally, Section 3.4 details the classification procedure used to identify whether a
startup commercializes scientific innovations, and Section 3.5 details the approach for measuring a
startup’s set of potential acquirers and the characteristics of those acquirers.

3.1 Estimation of Value Creation and Capture

Addressing the central question of this paper requires measuring the joint surplus generated by
a startup at the time of acquisition, a construct that has not been systematically quantified to
date. Measuring the long-run joint surplus ultimately generated by an innovation is challenging,
especially if one considers the uncertainty of future developments. In many cases, the economic
rents from innovation unfold over time and are shaped by unpredictable factors such as an evolving
competitive landscape, emerging complementary innovations, and organizational complementarities
not present at the time of acquisition.24

To tackle this challenge, I develop a simple methodology that relies on startup acquisitions
where the acquirer is a publicly listed firm. These transactions offer a clear empirical setting to
estimate both the total surplus generated by an innovation and the share captured by the startup.
At the moment of acquisition, the startup exits and realizes its private return, while the acquirer
assumes control of the innovation and its future benefits. Crucially, the surplus accruing to each
party at this point can be estimated, providing a basis for analyzing how the total value is created
and divided. To conduct this estimation, and consistent with the theoretical framework, I formally
decompose the joint surplus, denoted Vt, into two measurable components: The startup’s surplus,
Vs, which represents the net surplus captured by the startup’s shareholders (e.g., founders and
investors), and the incumbent’s surplus, Vi, which reflects the gains accruing to the acquiring firm.
Thus,

Vt = Vs + Vi (Joint surplus) (2)

On the one hand, the startup’s surplus, Vs is directly observable from the acquisition price
and the startup’s investment history. I define it as the difference between the net acquisition

24For example, consider NVIDIA’s 2008 acquisition of Ageia, a company that had developed the first dedicated
Physics Processing Unit (PPU) for simulating real-world physical interactions in software. When acquired, this
technology was designed to handle complex physics calculations in real time, such as collisions, rigid-body dynamics,
and fluid motion. Following the acquisition, NVIDIA integrated Ageia’s PPU engine into its GPU architecture.
While initially aimed only at the gaming market, the same simulation capabilities later provided useful for high-
fidelity virtual environments used in autonomous vehicle development. As NVIDIA noted, “they wound up building
a solution that is so realistic, it’s now used as part of the foundation of NVIDIA’s self-driving car technology”.
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price received, Ps, and the total accumulated equity investment in the venture up to the point of
acquisition, Ts:

Vs = Ps − Ts (Startup’s surplus) (3)

Note that the net price Ps includes all forms of consideration, such as earn-outs and stock
options, and discounts the debt, if any, that the startup had contracted at the time of acquisition.25

Likewise, the investment Ts refers specifically to the accumulated monetary capital other than debt
allocated by the startup’s shareholders (e.g., early investors, venture capital, and private equity),
and excludes non-dilutive financing such as grants and subsidies, which do not represent equity
claims and, thus, do not factor into the private surplus calculation. While non-dilutive funding
may certainly affect a startup’s survival or trajectory, they do not alter the residual economic rents
accruing to shareholders and are therefore excluded from this measure of surplus.26

On the other hand, I use an event study to estimate the acquirer’s surplus associated with
the acquisition, Vi, based on the change in the acquiring firm’s market value around the time of
the deal announcement. Crucially, because the acquirer is publicly traded, I observe the market’s
valuation of the expected gains associated with the acquired technology. The key assumption is
the stock market reaction reflects the expected net present value of future cash flows generated by
combining the startup’s assets and capabilities—such as its technology, intellectual property, human
capital, and inventive capabilities—with the incumbent’s ones—such as manufacturing capabilities,
complementary technologies and patent portfolios, and distribution networks.

This assumption is grounded in the Efficient Markets Hypothesis, which holds that asset prices
incorporate all publicly available information and reflect consensus expectations over future payoffs
in competitive markets with rational and profit-maximizing agents (Fama, 1970; Samuelson, 1965).
Accordingly, the observed market reaction provides a forward-looking, risk-adjusted estimate of the
acquirer’s expected surplus, capturing not only the anticipated benefits of the innovation but also
the risks associated with technical feasibility, market adoption, and future development costs.27

25It is common to report the total deal value as enterprise value, which includes both equity and debt components.
To compute the equity value, i.e., the actual proceeds to shareholders, the debt must be subtracted from the reported
price: Ps = Net Price = Equity Value = Enterprise Value − Debt

26It is also worth noting that this manuscript abstracts from factors such as time, risk exposure, and opportunity
costs borne by entrepreneurs and investors. Alongside monetary investments, these factors could reasonably be
considered part of the economic cost, reducing the startup’s surplus Vs. However, and consistent with the data,
I argue that these hidden costs are likely larger for science-based ventures, which typically require more upfront
capital, longer development timelines, and face greater uncertainty. As a result, omitting these costs likely renders
conservative estimates of the capture penalty between the two startup types—the adjustment would be larger for
science startups than for their counterparts, while it would not affect the acquirer surplus. Likewise, working capital
and other deal-specific adjustments that may affect the final equity price are not incorporated, as they are generally
unobservable and relatively minor. Their exclusion is not expected to bias the results.

27For example, in early-stage biotechnology acquisitions, the incumbent’s surplus at the time of acquisition reflects
not only the anticipated benefits of the acquired asset but also the risks associated with clinical trial outcomes,
regulatory approval, and the substantial future investment required for commercialization. All else equal, the same
drug candidate in Phase II trials will generate a larger market reaction than if it were in Phase I, as more uncertainty
has been resolved. Similarly, the acquirer may be willing to pay a higher price at a later stage of development.
Importantly, if the rent-sharing dynamics are affected by the degree of risk at the time of the transaction, these will
be absorbed by the measure, via the differential stock market reaction and acquisition price.
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Therefore, I define the acquirer surplus as

Vi,d = Mi,d × E[vi,d | ri,d] (Acquirer’s surplus) (4)

where E[vi,d | ri,d] denotes the expected change in the acquirer’s firm value attributable to
the acquisition (vi,d), conditional on the observed stock market return ri,d. Since ri,d is a noisy
measure of the acquisition specific value, I develop a filtering approach to recover the component
of the return that is attributable to the acquisition itself. The methodology used to estimate this
conditional expectation E[vi,d | ri,d] is described in detail in the following section. Mi,d is the
acquirer’s market capitalization at the time of the announcement, and the subscript d denotes the
time window used to measure market returns, which is omitted throughout most of the manuscript
for notational simplicity and also discussed further in subsequent sections.

The sum of these two components provides an estimate of the joint surplus—the total private
value created by the innovation at the time of transfer, and the ratio of the startup surplus to this
joint surplus yields the startup capture share λs.28

λs = Vs

Vs + Vi
(Startup capture share) (5a)

λi = 1 − λs = Vi

Vs + Vi
(Acquirer capture share) (5b)

Note that the methodology outlined thus far is consistent with the conceptual framework intro-
duced in the previous section (Equation 1). As discussed, the method estimates the joint surplus
at the time of acquisition using the information available to both parties—that is, it values the
innovation conditional on the prevailing state of the world, including unresolved technical risks,
competing technologies, projected demand, regulatory and policy constraints, capital-market and
macroeconomic conditions, and expected integration costs.29

Likewise, because the market reaction incorporates only information available at the announce-
ment, it excludes unforeseen shocks that materialize later. This is appropriate for the paper’s
purpose, as entry, investment, and acquisition decisions are made on that same information set.

28Note that Vi represents the net incremental value to the incumbent’s shareholders and that the stock market
reaction is effectively subtracting the Enterprise Price paid to acquire the startup.

29In some cases, the acquiring firm already holds an equity stake in the target at the time of acquisition, often
through a Corporate Venture Capital (CVC) investment. In such cases, part of the surplus attributed to the startup
in the baseline calculation actually reflects returns on the acquirer’s pre-existing ownership. To adjust for this,
I compute the incumbent’s ownership share, multiply it by the acquisition price, subtract the incumbent’s initial
investment, and reallocate the resulting amount from the startup’s surplus to the acquirer’s surplus. Let αCVC
denote the incumbent’s ownership share, P the acquisition price, and TCVC the capital invested by the CVC unit.
The adjusted measures are:

V ′
s = Vs − [αCVC · P − TCVC] , V ′

i = Vi + [αCVC · P − TCVC] .

This treatment is consistent with the main methodology, since the market-based estimate of Vi reflects expectations
of future gains and is unlikely to incorporate the sunk cost of the CVC investment. In my sample, CVC-backed
acquisitions represent 3.2% of all transactions. The empirical results are robust to the inclusion or exclusion of this
adjustment, but it is implemented for conceptual consistency (see Appendix).

22



The relevant factor that conditions incentives is therefore the division of rents expected at that
moment—clearly for the startup and, in most cases, for the incumbent as well—rather than the
long-run, ex-post realization of those rents.30

This perspective is consistent with other rent-sharing studies in innovation contexts (e.g., Kline
et al., 2019), which likewise focus on ex-ante surplus division as the driver of investment incentives.
Figure 3 illustrates the components of innovation value at the time of acquisition, distinguish-
ing between the startup’s realized surplus and the acquirer’s expected surplus based on known
information—which are measurable—, and additional value components, such as externalities or
unresolved future uncertainties, that lie outside the scope of the measurement.

Startup Surplus

Acquirer Surplus
Includes known risks and expected development costs,
e.g., stage of clinical trial

Acquirer Unknown Surplus
Reflects future unknowns that can increase or decrease
the Acquirer Surplus, e.g., emergence of new technologies

External Value
Spillovers, consumer surplus, social value

Joint Surplus

Innovation Value
at Acquisition

Figure 3: Schematic decomposition of innovation value at acquisition. The figure distinguishes between the startup’s
realized surplus, the acquirer’s expected surplus based on known risks and development costs, and additional value
that may accrue to the acquirer from unforeseen future events. It also highlights forms of external value not captured
in private transactions, such as consumer surplus and knowledge spillovers. Only the startup and acquirer surpluses
based on current information are observable and used to estimate the joint surplus at the time of acquisition.

3.1.1 Isolating the Signal from Noise

A complicating factor is that stock market abnormal returns ri, a basis for computing the in-
cumbent’s private value Vi, can be noisy and reflect not only the acquisition’s surplus, but also
concurrent firm-level events and external conditions unrelated to the transaction under study.

30For instance, returning to the NVIDIA’s 2008 acquisition of Ageia, the deal was motivated by the potential to
enhance real-time physics simulation in gaming applications through the integration of PPU technology. The surplus
at the time likely reflected the state of the industry, foreseeable technical developments, and anticipated commercial
applications in gaming. It is reasonable to assume that subsequent uses of the same capabilities in autonomous
vehicle development—applications that could not have been foreseen at the time—were not part of the original deal
rationale. As such, this unknown upside was not reflected in the acquisition price or in the stock market reaction. On
the other hand, it is also fair to assume that, had the parties and the market anticipated this future application, the
joint surplus would likely reflect this information, and the division of rents would have adjusted accordingly. Again,
this is true under the assumption of symmetric information, which I discuss further in the next section.
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Large incumbents not only can release other relevant announcements but also face competitive
threats and changes in macroeconomic conditions or industry-specific shocks that influence their
share price around the acquisition announcement. That is, the observed abnormal return around
the announcement date mixes signal with noise—spurious factors unrelated to the transaction’s
intrinsic value.

To isolate the acquisition-related signal from the noise and extract the expected value of the
incumbent’s private gains, I adopt a parametric approach inspired by Kogan et al. (2017) but
adapted to the M&A context. My main adaptation is that, unlike assumed by the authors in the
process of filtering out the signal from the noise,31 I assume that acquisitions can destroy value
for the incumbent and, thus, lead to negative abnormal returns. Indeed, it is well documented
that acquirers often experience negative abnormal returns on acquisitions if investors believe the
incumbent overpaid for the target, with the acquisition involving significant integration costs or
organizational frictions. This is especially true in technology-based acquisitions (Benson and Ziedo-
nis, 2010; Chondrakis et al., 2021; Higgins and Rodriguez, 2006), where is often argued that the
value is mostly passed onto target firms (e.g., DeLong, 2001; Testoni, 2024).

The methodology is summarized as follows, with more details provided in Appendix C. I treat
the observed abnormal return ri as a noisy signal of the unobserved expected return from the
acquisition, vi. Specifically, I assume vi follows a truncated normal distribution, truncated at an
acquisition-specific lower bound ki < 0. This lower bound is determined so that, while the private
value for the incumbent vi may be negative, the total value creation, Vt is non-negative. In other
words, the transaction cannot destroy value in aggregate.32

The logic follows standard Bayesian updating: given a prior distribution for vi and normally
distributed noise, the posterior mean can be expressed in closed form, involving the normal density
and distribution functions evaluated at the truncated point. The final outcome of this approach is
an estimate of E[vi | ri], where the parameters are estimated at the company, industry, year, and
transaction level, using millions of stock prices and more than one hundred thousand M&A trans-
actions. Formally, the expected return captured by the incumbent attributed to the acquisition,
given the observed abnormal return ri and truncation at ki, is:

E[vi | ri] = δiri +
√

δiσε,it

ϕ
(

ki−δiri√
δiσε,it

)
1 − Φ

(
ki−δiri√

δiσε,it

) , (6)

where ϕ(Rit) and Φ(Rit) denote the probability density and cumulative distribution functions
of the standard normal distribution, respectively.33

This expression can be interpreted as follows. First, the term δi measures the share of the total
31The authors develop a methodology to compute a stock market-based measure of patent values by isolating signal

from noise, under the assumption that patent grant announcements cannot destroy value.
32This assumption, while already an improvement over the original approach, remains somewhat restrictive as I

still rule out the possibility that a transaction can destroy value in the aggregate. This simplification may overlook
rare cases where the transaction could plausibly reduce total joint surplus.

33The results are robust to other distributional assumptions.
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variance in acquisitions attributable to the incumbent’s private value component—the signal-to-
noise ratio. A higher δi implies that most of the variation in vi is driven by private information
rather than noise. Next, Ri is the standardized threshold above which vi is truncated, reflecting
the fact that we only observe vi if it exceeds ki. Finally, the ratio ϕ(Ri)/

(
1 − Φ(Ri)

)
adjusts the

mean to account for this truncation, often referred to as the inverse Mills ratio. It captures how
the tail of the distribution above ki inflates the conditional expectation of vi, given that only high
realizations of vi are observed. Finally, the expected value vi is then used to compute the acquirer
surplus, Vi, the joint surplus, Vt = Vi + Vs, and the corresponding share of value captured by the
startup, λs.

It is important to note that recent research suggests this methodology may bias coefficients on
the right-hand side when the private value estimate is used as the dependent variable (Arora et al.,
2024a). The issue arises because the distributional assumptions in Equation 6 require all expected
returns to derive from a single underlying distribution. In contrast, my econometric specification
posits that the coefficient for science-based startups should differ systematically, implying that the
incumbent’s private value (as measured by the stock-market response) should be larger for such
innovations. Arora et al. (2024a) propose a methodology to address this concern by allowing for two
distinct distributions when estimating the expected returns, but I lack sufficient data to implement
their correction. Instead, I conduct simulation exercises (reported in Appendix C) to assess the
magnitude of this potential measurement error and the direction of the bias. Aligned with intuition,
the simulations indicate that it biases the estimates downward. Therefore, the reported coefficients
should be viewed as conservative, representing, in this respect, a lower bound on the true effect.

3.1.2 Measurement Assumptions and Limitations

The methodology developed in this paper interprets the acquisition price and the acquirer’s stock
market response as jointly revealing the expected value of the innovation at the time of transac-
tion. Under the assumption of symmetric information and rational expectations, both parties, the
startup and the incumbent, form a common belief over the distribution of future payoffs. The as-
sumption is thus that the negotiated price reflects the seller’s share of surplus, while the acquirer’s
abnormal return captures the acquirer’s. This approach aligns with the semi-strong form of the
Efficient Markets Hypothesis (EMH), which holds that publicly available information is quickly
incorporated into prices (Fama, 1970), and it also mirrors the assumptions adopted in structural
models of surplus division and M&A bargaining (e.g., Edmans, 2012). However, this assumption
could be contested. A large body of theoretical and empirical work has documented how informa-
tion frictions distort transaction outcomes in markets for complex assets. In settings marked by
high uncertainty—such as science-based innovation—acquirers face serious difficulties in evaluating
the quality, applicability, and long-term value of a technology (Testoni, 2022). Classic models of
adverse selection predict that opaque assets will be underpriced or fail to trade altogether (Akerlof,
1970), while asymmetric information in capital markets distorts investment and financing decisions
(Myers, 1984). In the M&A context, acquirers often face valuation uncertainty, leading to winner’s
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curse dynamics and persistent mispricing (Boehmer et al., 2003; Moeller et al., 2005).
Empirical evidence confirms these theoretical concerns. Chondrakis et al. (2021) show that an

institutional reform increasing patent transparency led to both a higher likelihood of acquisition
and a more positive market response, suggesting that reduced information frictions raise both
trade frequency and perceived value. Similarly, Higgins and Rodriguez (2006) find that acquirers
with privileged access to scientific knowledge—either through prior alliances or domain specific
R&D experience—earn significantly higher returns upon acquisition announcements, indicating
that acquirers better informed can more accurately assess value and outbid rivals. In a related vein,
research by Palermo et al. (2019) documents that externally acquired patents are more likely to be
invalidated in litigation, implying that acquirers rationally discount prices to reflect unobservable
quality risk.

These dynamics introduce two distinct implications, one concerning selection and the other
concerning measurement and interpretation. First, asymmetric information between the trans-
acting parties (i.e., between the startup and the acquirer) affects whether a deal occurs and how
surplus is divided. High uncertainty or opacity, especially common in science-based ventures, may
prevent transactions altogether if acquirers are unable to assess the technology’s value or fear ad-
verse selection. This introduces a selection bias in the observed sample: we are more likely to see
deals involving lower-uncertainty innovations or situations where the acquirer has domain expertise
or informational advantages. Second, even when deals do proceed, asymmetric information may
distort bargaining outcomes. While in theory mispricing can go in either direction, in practice,
informational disadvantages tend to suppress valuations—particularly for young, science-intensive
startups that struggle to credibly signal the long-run value of their technologies without exposing
themselves to appropriation. This does not introduce measurement error per se; rather, it reflects
the realized outcome of bargaining under imperfect information, and is therefore part of the em-
pirical distribution of surplus shares. I treat these distortions as features of the environment, not
as flaws in the estimation, since they reflect the structural conditions under which innovation is
commercialized.

By contrast, information asymmetries in capital markets, between insiders and external in-
vestors, raise concerns about measurement. Because the empirical strategy infers the acquirer’s
surplus share from stock market reactions, incomplete information on the part of market investors
may attenuate the observed response. That is, when capital markets lack sufficient visibility into
the nature or strategic relevance of a transaction, the announcement-period abnormal return may
understate the true expected value to the acquirer. This type of friction leads to measurement error
in the dependent variable, and, if anything, biases downwards the estimated acquirer’s surplus. As
such, my estimates should be viewed as conservative lower bounds.

3.2 Main Data Sources

I compile data from three primary sources. First, I utilize PitchBook, a comprehensive database
of private and public equity transactions, which provides detailed information on startup funding
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rounds, valuations, and exit events. Using this source, I identify all startups acquired between 1990
and August 2024. During this period, from a total sample of 352,390 startups, 41,484 (11.77%)
exited via acquisition.34 This sample includes startups acquired by both public and private firms;
however, for my analysis, I focus only on those acquired by publicly traded firms in the U.S.35 This
restriction is necessary because the value estimates, as defined in the previous section, rely on stock
market reactions to acquisition announcements and, thus, on firms that are publicly traded.36

To identify which startups from PitchBook were acquired by publicly traded U.S. firms and to
extract stock market data for computing estimates, I rely on CRSP, which provides detailed daily
stock market information, including stock prices, shares outstanding, and turnover rates. Pitch-
Book does not directly indicate whether an acquirer is publicly traded. However, both PitchBook
and CRSP provide the Central Index Key (CIK), a unique company identifier assigned by the
U.S. Securities and Exchange Commission (SEC), allowing for a direct match between PitchBook
acquirers and stock market data.

Of the 46,144 acquisitions recorded in PitchBook, 20,309 (44.01%) were conducted by a company
with an available CIK, indicating that the acquirer has relevant activity in the U.S. However, having
a CIK does not necessarily mean that a company is publicly traded. This issue is easily resolved by
matching the CIKs in PitchBook to those in CRSP, which inherently identifies publicly listed firms.
By doing so, I determine which acquirers are publicly listed in the U.S. Among the 20,309 startup
acquisitions with an available CIK, 13,172 are matched to a company in CRSP, representing a total
of 3,605 unique incumbents.37 These steps produce a dataset that, for each acquisition, includes
information on the startup and its characteristics (e.g., founding year, funding history), details of
the transaction (e.g., acquisition price, announcement date, closing date), and data on the acquirer,
which includes stock market data for every trading day, particularly around the announcement

34For comparison, during this period, 10,303 (2.92%) exited via IPO, with the share of IPOs relative to M&A
decreasing over time, a trend consistent with those documented by Ederer and Pellegrino (2023). The decline in
IPO activity suggests that acquisitions have become the dominant commercialization pathway for innovation. If
anything, excluding IPOs aligns the analysis more closely with the contemporary startup landscape, where most
value creation and capture occur within acquisition markets rather than public listings. Empirically, the question
is whether including IPOs as a route for value capture would alter the qualitative results. IPOs and acquisitions
are fundamentally different exit strategies, with IPOs often representing firms that can sustain independent growth,
while acquisitions may involve both startups capable of independent growth and those that require an incumbent’s
capabilities to scale.

35These firms are listed in the U.S. but are not necessarily headquartered there. Some acquisitions are made
by international companies that trade on U.S. stock exchanges through Depositary Receipts, secondary listings, or
subsidiaries and U.S. branches of foreign firms. In all cases, the estimation is based on the stock market reaction of
the entity listed on a U.S. exchange. In the sample used for this analysis, few acquisitions are conducted by firms with
non-U.S. headquarters, with the majority of these involving American Depositary Receipts (ADRs). For example,
the final sample includes 20 acquisitions by Novartis AG, a Swiss multinational whose ADRs are traded on the New
York Stock Exchange (NYSE).

36This restriction may introduce selection bias in the estimates. Regarding value creation, acquisitions by publicly
traded firms are more likely to involve startups with stronger technological potential, leading to greater value creation
compared to the average startup, regardless of whether the acquirer is public or private. These acquiring firms also
tend to have the necessary capabilities to integrate and scale acquired technologies, reinforcing their role as key players
in the acquisition market. On the other hand, the impact of public acquirers on value capture remains unclear.

37The CIK in the CRSP dataset is actually provided via a crosswalk table made available by Compustat. Further-
more, some minor cleaning is required on the PitchBook side, such as padding the identifiers.
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period.
This dataset would be sufficient for the empirical analysis if I were not refining the estimates to

isolate the signal from the noise associated with the market reaction to the acquisition. However,
to achieve this, I need to estimate acquisition-specific parameters for each acquirer. Since the
acquirers in the sample described have conducted far more acquisitions than those captured by
PitchBook, these other transactions must be incorporated. Thus, I supplement the data on M&A
transactions with Refinitiv (formerly SDC Platinum), a global M&A database. Refinitiv’s data
is not directly linked to CRSP or Compustat but, conveniently, Ewens et al. (2024), building on
Phillips and Zhdanov (2013), developed a crosswalk. The authors provide a dataset that links
Refinitiv M&A identifiers to Compustat and, in turn, CRSP.38 This dataset includes linkages for
130,432 acquisitions available in Refinitiv. Of these, 108,181 acquisitions are matched to the CRSP
sample—conducted by 13,877 acquirers. The set contains thus 108,181 acquisitions conducted by
publicly traded U.S. firms, all of them matched to daily stock market data on the acquirer side.

This process results in two interrelated datasets. The first dataset contains 108,181 acquisitions
conducted by publicly traded U.S. firms, supplemented with daily stock market data for each
acquirer. This dataset is used to estimate the parameters needed to isolate acquisition-specific
signals and compute expected abnormal returns for each M&A transaction. The second dataset
contains 13,172 acquired startups, matched with estimated abnormal returns from the first dataset.
It includes detailed information on both the startups and their acquirers, as well as estimates of
the private values captured by acquirers and the total value created by startups.

As a last step, I further clean the final sample of 13,172 startup acquisitions by dropping obser-
vations with incomplete data, particularly those that have missing investment details or acquisition
prices. After filtering out transactions with relevant missing data, the final sample consists of 5,823
startups.39

Figure 4 presents the temporal evolution of the number of startup acquisitions in the final sample
by industry.40 These trends align with previous studies on startup activity across industries (e.g.,
Lerner and Nanda, 2020). Startup acquisitions conducted by publicly listed U.S. firms over the past
few decades have grown concentrated in Software & IT Services, Biotechnology & Pharmaceuticals,
Consumer & Business Products and Services, and Health Care Equipment & Services. In contrast,
Energy, Hardware, Industrials, Manufacturing & Materials, and Semiconductors show relatively
low levels of acquisition activity, with only modest increases over time.

38The linkage is provided via acquirer gvkey.
39Missing transaction prices are common and account for the majority of observations dropped in the final sample

selection. Even for acquisitions conducted by public firms, price disclosures are often absent, which may introduce
selection bias. Acquisitions with disclosed prices are more likely to be those where the deal is considered strategically
significant or where the acquirer wants to signal success to investors. This means that reported prices are more likely
to correspond to highly successful acquisitions from the acquirer’s point of view. Furthermore, price disclosure is
compulsory over a certain threshold, which means that only deals under the threshold are missing. If price disclosure
is systematically correlated with acquisition outcomes, the final sample may overrepresent high-value deals, leading
to an upward bias in estimated value creation.

40The industry classification follows the Global Industry Classification Standard (GICS) developed by Morgan
Stanley Capital International (MSCI). Refer to the Appendix for details on the classification methodology.
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Figure 4: Number of startup acquisitions per industry and year (1990–2022). The data align with prior research
on innovation activity, showing that startup acquisitions grow concentrated in life sciences (e.g., Biotechnology &
Pharmaceuticals, Health Care Equipment & Services) and IT-related industries (e.g., Software & IT Services). In
contrast, industries such as Energy, Industrials, Hardware, and Semiconductors display fewer acquisitions, with little
growth after the 2000.

3.3 Value Creation and Value Capture Measurements

Using these data and the methodology outlined above, I compute the value created and captured
by a startup. An important step is to identify first the time window of the event, i.e., for which days
the stock market reacts to the acquisition announcement and, thus, I can estimate the acquirer’s
surplus from the acquisition. To that end, I look at the days in which the trading volume is
abnormal. Figure 5 plots the share turnover around acquisition announcement days, reporting
the coefficient estimates bl, l = [−4, 6] and 95% confidence intervals. While the days prior to the
announcement the turnover is statistically the same, there is a significant increase in share turnover
in the day of the announcement and the day after. This increased activity drops significantly two
days after the announcement, although is still above pre-announcement days. By day 3, the trading
volume goes back to baseline levels. These result suggest that the market significantly responds
to the announcement during three days, from [t, t + 2]. I will use this time window in my main
results.41

41This time window is consistent with the literature, which notes that acquisitions are complex and the market
takes a few days to assimilate all the information. In additional analysis, I test the robustness of my estimates with
time windows of 1 and 2 days.
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Figure 5: Share turnover around acquisition announcement days, in percentage points. Share turnover (s) is computed
as the ratio of daily volume over shares outstanding. The Figure reports the coefficient estimates bl, l = [−4, 6] and
95% confidence intervals from the specification sfd = a0 +

∑
l
blIfd+l + cZfy + ϵfd, where I is a binary variable

indicating whether firm f announced an acquisition on day d; and Zfd is a vector including firm-year and calendar
day fixed effects. Standard errors are clustered at the firm-year and calendar day level. Baseline level is set at day
l = −5. The mean and median share turnover on l = −5 are 1.06% and 0.61% respectively.

Within a three-day event window, I estimate the private value that acquirers derive from each
acquisition. First, for every acquirer in the dataset, I calculate its observed daily abnormal return
(ri,d=[0,2]). Next, using historical acquirer-level data, I filter out noise to isolate the expected
return (vi,d=[0,2]) attributable specifically to the acquisition. This involves estimating both firm-
level and deal-level parameters, with deal-level truncation defined as ki = − Ps

market_capi,d=−1
. Next,

I accumulate the return over the three-day window (vi,d=[0,2]) and then compute the private value
Vi,d=[0,2] = mktcapi,d=−1 × vi,d=[0,2], where mktcapi,d=−1 is the acquirer’s market capitalization at
the closing of the day previous to the acquisition announcement. Finally, I calculate the total value
created (Vt) and the fraction captured by the startup, λs.

Figure 6 presents the distribution of total value created (panel (a)) and the fraction of value
captured for the 5,823 startups in my final sample (panel (b)). The right tail of the distribution in
Panel (b), where value capture exceeds one, may initially appear puzzling but is conceptually coher-
ent. Recall that value capture reflects the share of the total surplus appropriated by the startup in
the acquisition. Values above one imply that the incumbent paid more than the total realized value
of the deal—i.e., the acquisition destroyed value from the acquirer’s perspective. In such cases, the
startup effectively walks away with more than the total surplus created, leaving the acquirer with a
net loss. Beyond merely myopia, acquirers may overpay when facing competitive pressure, limited
outside options themselves, or strategic motivations such as preemption or long-term positioning.
Likewise, other factors common in bidding processes and prominent when competition intensifies,
such as the winner curse or affiliated bidding, can lead to overpayment. Indeed, when regressing an
indicator for overpayment on the number of potential acquirers, I find that the likelihood of over-
payment (capture larger than 1) is significantly higher in thicker acquisition markets. This suggests
that strong bargaining positions—fueled by competition among acquirers—can allow startups to
extract a disproportionately large share of the surplus, even when that entails losses for the buyer.
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Figure 6: Panel (a) displays the dollar estimates distribution for the total value created, Vs. Panel (b) displays the
estimates for startup value capture (λs). Values over 1 indicate that the acquisition destroyed value for the incumbent
(Vi < 0).

Figure 7 illustrates the correlation between the incumbent’s private value Vi and the VC funds
raised by the acquired startup. This strong correlation suggests that market beliefs (adjusted by
noise), as captured by the measure, align closely with those of venture capitalists. While a similarly
strong correlation is observed when considering total joint surplus Vt, the incumbent’s private value
Vi provides a more precise comparison. Unlike joint surplus, which incorporates the price paid to
the startup (and may indirectly reflect VC funding), the private value is influenced solely by market
reactions.
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Figure 7: Cross-sectional relationship between the estimated joint surplus (Vt = Vi + Vs) and the VC and PE funds
raised before the transaction. Variables are log-transformed.

3.3.1 Illustrative Examples

Next, I provide two examples to illustrate the dynamics of value capture in startup acquisitions
based on my estimates. The first is DeepMind, acquired by Google in February 2014 for a total
of $650 million, including cash and other considerations. The company had raised $61 million in
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venture capital prior to acquisition. Thus, the startup’s surplus at acquisition was $589 million
(Vs). Founded in 2010 by U.K.-based computer scientists, DeepMind specialized in developing
cutting-edge artificial intelligence and, among its major breakthroughs, later developed AlphaFold,
a software that predicts protein structures. At the time of acquisition, DeepMind had approximately
75 employees, primarily scientists and personnel of technical character, and had only a promising
technology, with no revenue.42 Over the three days following the acquisition, Google’s market
valuation increased by $1.59 billion, adjusted for market noise, representing its private value from
the acquisition (Vi). Thus, the total estimated joint surplus, or value created (Vt), of DeepMind at
the time of acquisition is given by Vt = Vi + Vs = 1, 590 + 589 = $2, 179 million.

DeepMind’s shareholders, including its founders and investors, captured 26.6% of the total
value, while Google retained the remaining 73.4%. This level of value capture places the startup in
the bottom 20th percentile. This division of rents suggests that the science-based startup, despite
possessing a highly innovative technology, had limited bargaining power at the time of transfer,
potentially driven by the lack of outside options. It is also important to note that any risks related
to the uncertainty of DeepMind’s AI applications, including commercialization and technological
viability, are effectively accounted for in the estimation, as they are reflected in the stock market
reaction.

At the other end of the spectrum, consider Postmates, a software platform for on-demand
delivery and urban logistics, which connects customers with local couriers to facilitate the delivery
of goods—and does not rely on scientific innovations. In 2020, Postmates was acquired by Uber for
$3,900 million. Uber’s estimated private value gain from the acquisition was $1,420 million, leading
to a total economic value of $5,320 million. In this case, Postmates captured 73.3% of the economic
surplus upon transfer. Unlike DeepMind, which developed frontier technologies requiring specialized
capabilities for scaling commercialization, Postmates operated in a mature and competitive market
where it could credibly threaten to scale independently if necessary. Additionally, a potentially
large number of acquirers further strengthened its outside options in negotiations.

3.4 Identifying Scientific Innovations

I define science-based innovations as technologies that strongly rely on the development and applica-
tion of novel scientific advances, often originating from fields such as life sciences, chemistry, physics,
and engineering. Unlike incremental technological improvements, scientific innovations typically ex-
pand the frontiers of knowledge and introduce novel solutions to complex problems (Fleming, 2001;
Fleming and Sorenson, 2004). These innovations often require extensive R&D, specialized expertise,
and long validation cycles before they can be successfully commercialized (Hall and Lerner, 2010).
Therefore, I define a science-based startup as one that develops its products, technologies, and
services using science-based innovations, regardless of whether the underlying knowledge originates
internally or from external sources such as universities, research laboratories, or other scientific
institutions. These startups translate scientific discoveries into marketable products, services, or

42Source: DeepMind 2014’s annual return.
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processes, often operating in industries such as biotechnology, advanced materials, clean energy,
and artificial intelligence.

Identifying a science-based startup involves assessing the extent to which its technology is rooted
in novel scientific research. While several methods exist,43 in this paper I rely on a Large Language
Model (LLM) to assess the extent to which startups rely on novel scientific research. A growing
body of literature demonstrates the effectiveness of LLMs for classification tasks in economics and
innovation research (e.g., Dell, 2024). These studies highlight the accuracy and efficiency of LLM-
based methods, often matching or exceeding manually curated labels (Durvasula et al., 2024) and,
for example, being able to classify scientific research based on its promise for commercial application
with high accuracy (Masclans et al., 2025). Notably, studies also acknowledge limitations such as
biases in training data and sensitivity to model selection and prompts (Ash and Hansen, 2023;
Carlson and Burbano, 2024).

For each startup in the sample, I first collect extensive textual data from multiple sources,
including current and historical content from the startup’s website, news articles, and SEC filings
related to its acquisition. This textual data provides a comprehensive view of the startup’s business
and innovation activities and is processed by the LLM for classification.44

Next, I input the collected textual data, along with the year of the startup’s founding, into a
Large Language Model (LLM) and instruct it to assess the extent to which each company relies on
novel scientific knowledge to develop its technologies, considering the years of activity. Specifically,
I use Llama 3.3 70B, a state-of-the-art, instruction-tuned model developed by Meta and released
in December 2024. This model is optimized for tasks requiring nuanced language understanding
and contextual reasoning. Furthermore, Meta’s LLMs are open-source, significantly reducing costs
while delivering performance comparable to proprietary models from other leading developers, such
as OpenAI. A key advantage of Llama 3.3 is its 128,000-token context length, which allows it to
process extensive, unstructured, and fragmented data from multiple sources. Because information

43A widely used approach involves patents, often supplemented by patent-to-paper citations to assess reliance on
scientific knowledge. While this method is certainly useful, it has limitations that are particularly salient when applied
to startups. First, startups have a lower propensity to patent than incumbent firms—many startups that develop
novel technologies susceptible to be patented do not hold patents often due to the high costs associated not only with
patenting but also with eventually enforcing them. As a result, they often rely on alternative forms of intellectual
property protection, such as trade secrets (Graham et al., 2009; Bryan and Williams, 2021). Second, patents are an
imperfect proxy for innovation and are prone to various measurement errors (Lerner and Seru, 2022), again, especially
prevalent in startups. Among others, one key issue is that patents are frequently assigned to inventors, universities,
or venture capital firms, rather than to startups themselves, complicating the task of linking patents to specific firms.

For example, in my sample of 5,823 startups, 734 are categorized as Biotechnology firms, a sector with a high
propensity for patenting. However, only 417 of these firms (56.8%) are matched to patents, leaving 317 firms (43.2%)
without any patent records. A closer examination of these 317 startups reveals that most are highly technological,
actively developing advanced technologies, and often contributing to scientific research. This indicates that the
absence of patents does not necessarily reflect a lack of scientific or technological activity. The issue is likely even
more pronounced in other sectors where patenting is less common. The magnitude of this discrepancy is particularly
notable given the selective nature of this dataset, which consists of successful startups acquired by publicly listed
incumbents.

44Importantly, patent and scientific publication data are excluded from the LLM task to prevent bias. As discussed,
many startups engaged in scientific innovation do not have patents or matched publications. Including these data
could lead the LLM to classify startups with matched patent data as more science-based simply due to the availability
of additional information, rather than an inherent difference in their reliance on science.
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on a startup’s reliance on science may be dispersed across website content, news articles, or SEC
filings—without a predictable location—this extended context length improves the accuracy of
information extraction.

The classification task involves the LLM assigning each startup a score from 1 to 5, reflecting the
extent to which its technologies are grounded in novel scientific research. Each score is accompanied
by a confidence metric, which enhances interpretability and robustness by quantifying the model’s
certainty in its classification. According to the LLM classification, 70.83% of startups receive a
score of one and 5.39% of two, indicating that they do not develop scientific innovations. 5.56% of
startups receive a score of three, while 15.03% receive a score of four, and 4.57% receive a score of
five. The distribution is bimodal, with peaks at one and four, which is characteristic of classification
tasks and suggests that the language model effectively differentiates between science-based and
non-science-based startups. Scores in the middle of the distribution (two and three, representing
10.95% of the data points) correspond to cases with greater classification uncertainty, while scores
at the higher extreme (five) are assigned with high confidence. This distribution indicates that the
majority of startups do not engage in scientific research or develop technologies closely tied to novel
scientific advancements.

For the analyses that follow, I use a binary variable to indicate whether a startup commer-
cializes scientific innovations: I define science-based startups as those receiving a score of four
or five, comprising 19.6% of the sample.45 The Appendix provides details on the classification
task, including the prompt used, the LLM configuration, and robustness analyses using alternative
classification thresholds and model specifications that account for prediction uncertainty. Follow-
ing Carlson and Burbano (2024), I also assess the sensitivity of the main results to variations in
prompt design, which may affect the classification outcomes. Furthermore, to validate the LLM-
based classification, I compare it with patent-to-paper citation data; the strong correlation between
LLM-based scores and citation metrics for startups with observable patents supports the validity
of the classification. Table 1 provides selected examples with the goal to illustrate the classification
exercise.

45For comparison, using a loose measure—defining a science-based startup as one with at least one paper citation in
its patents—9.6% of the sample would be classified as science-based. This upper limit in terms of patent-to-paper cites
is notably lower than the 18.8% identified using the LLM classification. Additionally, it is important to acknowledge
that the sample is selective, as it focuses on startups acquired by publicly traded firms, with a strong representation
of biotech ventures. This composition does not necessarily reflect the composition of all startups in, for example,
PitchBook, which should be considered when interpreting the results.
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Table 1: Examples of startups according to the LLM-based classification. The table presents selected representative
startups categorized into science (Panel A) and non-science (Panel B). While non-science startups may employ
advanced technologies, they are not developing technologies based on novel scientific discoveries.

Panel A: Science Startups

Industry Acquirer Startup Startup Description
Biotechnology,
Pharmaceu-
ticals

Astrazeneca Alexion Developer of biopharmaceutical drugs intended to transform the lives of
people affected by rare diseases and devastating conditions. The company
is involved in biotechnology research and offers therapies that treat parox-
ysmal nocturnal hemoglobinuria (PNH), atypical hemolytic uremic syn-
drome (aHUS), generalized myasthenia gravis (gMG) and neuromyelitis
optica spectrum disorder (NMOSD) among others, enabling individuals to
overcome the issues they face every day.

Energy Aqua Metals Ebonex Manufacturer of a conductive ceramic battery designed to be used in a
range of commercial cleantech applications. The company uses Ebonex
conductive ceramic powder to produce a commercially viable bipolar lead
acid battery, enabling users to use it in power storage, water treatment,
and construction.

Hardware Qualcomm Qualcomm
MEMS
Technologies

Developer of iMoD technology for mobile products. The company offers
iMoD technology, which is based on a Micro-Electro-Mechanical-Systems
structure combined with thin film optics, a display technology that delivers
display images with lower power consumption.

Industrials,
Manufac-
turing,
Materials

IDEX Corp Precision
Photonics

Manufacturer of optical components and coatings based in Boulder, Col-
orado. The company’s products including high-energy laser mirrors, polar-
izing optics, beam-splitters, etalons, and micro-optics, as well as a custom
service for difficult-to-create optics are offered to clients in telecommuni-
cations, defense, aerospace, biomedical, and semiconductor manufacturing
sectors.

Panel B: Non-Science Startups

Industry Acquirer Startup Startup Description
Software &
IT Services

Oracle Responsys Provider of marketing software to design, execute and manage email cam-
paigns designed to integrate comprehensive customer data analysis and
management systems with targeted customer interaction systems. The
company’s Interact Suite comprises various integrated applications that
enable the design, management and automation of tasks and processes for
executing email and cross-channel marketing campaigns, providing enter-
prises with the ability to have personalized web interactions with customers.

Energy SolarCity Zep Solar Designer of mounting hardware for photovoltaic (PV) systems. The com-
pany offers its patented Zep Groove PV module frame technology, a catalog
of its own mounting and grounding hardware and third-party compatible
products.

Consumer,
Businesses
Products &
Services

Amazon Zappos.com Retailer of clothing, footwear and accessories based in Las Vegas, Nevada.
The company offers shoes and clothing for men and women, bags and lug-
gage, accessories, boots, slippers, electronics, eyewear, watches and jewelry.

Health Care
Equipment

Hologic Bolder Sur-
gical

Manufacturer of surgical instruments and devices intended to elevate ex-
periences in surgery. The company specializes in the development of right-
sized surgical devices in order to improve procedural approaches and mini-
mize incisions, enabling pediatric surgeons to safely and effectively perform
minimally invasive surgery in pediatric patients from neonate to teenager.

35



3.5 Characterizing Potential Acquirers

In this section, I describe the measurement approach used to estimate the number of potential
bidders for a given startup, a key variable for studying the mechanisms that link market structure
to value capture. One approach to approximating the number of potential acquirers is to examine
product-market competition in the acquirer’s domain at the time of acquisition. Specifically, I
define a startup’s set of likely acquirers as the incumbents competing with the actual acquirer in
the downstream product market, in the acquisition year.

These competitors can be measured using textual data, as product-market similarity scores
derived from firm descriptions capture meaningful overlaps in market offerings and provide a sys-
tematic basis for identifying competitive relationships. The intuition is that incumbents tend to
acquire startups that complement or enhance their existing products, technologies, and capabili-
ties. For example, a startup developing advanced battery technologies for grid storage may attract
interest from multiple energy incumbents, while a biotechnology venture working on novel drug de-
livery mechanisms could be relevant to several pharmaceutical firms seeking to expand their R&D
pipelines. In software, a startup specializing in enterprise resource planning for human resources
may appeal to incumbents offering complementary business applications.46

To operationalize this idea, I draw on the Text-Based Network Industry Classifications (TNIC)
developed by Hoberg and Phillips (2010, 2016), which provide a continuous measure of firm-level
product-market similarity based on cosine scores from 10-K product descriptions. This approach
embeds firms in a high-dimensional space where proximity reflects overlap in product offerings and
has been widely used to study competition, acquisitions, market concentration, industry relatedness,
and innovation spillovers. Importantly, the measure is computed annually, offering a time-varying
indicator of product-market competition well suited to this analysis. I use the most recent version,
the Embeddings-Based TNIC Industry Classifications (ETNIC) released in 2024, which also extends
coverage to 1989–2023 (Hoberg and Phillips, 2025).

I define the acquirer’s competitive set as the number of firms with a cosine similarity score
exceeding the 0.2 threshold in the year of the acquisition, consistent with Hoberg and Phillips
(2016, 2025). For a given acquirer—and, by extension, the associated startup—a higher count of
such firms indicates a denser competitive environment and a broader pool of potential acquirers.
Conversely, a sparse ETNIC network reflects limited product-market competition, reducing the
number of viable acquirers and weakening the startup’s bargaining position.47

Let Sij,t denote the cosine similarity between firm i (the acquirer) and firm j in year t, where
t corresponds to the year of acquisition. I define a startup’s number of potential acquirers as the
size of the acquirer’s competitive set in the acquisiton year as follows:

46Conversely, some acquisitions are made specifically to eliminate competition by shutting down similar projects
(Cunningham et al., 2021). In this draft, I abstract from this scenario.

47The data matching is straightforward. I use the gvkey identifier available in both the CRSP and Hoberg and
Phillips (2025) datasets. The acquisition year is used for matching, ensuring that the pool of the acquiror’s competitors
reflects the market conditions at the time of the acquisition.

36



Potential Acquirersit =
∑
j ̸=i

1 (Sij,t > τ)

where 1(·) is the indicator function, equal to 1 if the condition is satisfied and 0 otherwise;
τ = 0.2 is the similarity threshold, consistent with Hoberg and Phillips (2025); and the sum is
taken over all U.S. publicly listed firms j ̸= i in year t.

Figure 8 presents four illustrative examples of the measure. Each panel displays the network of
all US-listed firms based on product-market rivalry in 2016. The selected firms are active acquirers
within my sample. In each network, the focal firm is highlighted in dark red, while its direct
competitors are shown in lighter red.

Consider, first, Oracle and Cisco, two major firms in the enterprise technology sector with sub-
stantial overlap in product offerings, including software, networking, and cloud services. Oracle
is associated with 33 competitors, while Cisco has 23. They share several common competitors,
such as Microsoft, VMware, Arista Networks, and F5. At the same time, the measure captures
differences in their competitive landscapes through firm-specific competitors. For instance, Oracle’s
specialization in databases and enterprise software aligns it with firms such as Red Hat, a provider
of open-source enterprise solutions. In contrast, Cisco’s focus on networking hardware and infras-
tructure is reflected in competitors like Ciena, which supplies optical networking equipment and
related technologies.

Second, consider Coherent, an industrial firm specializing in novel, science-based laser and pho-
tonic solutions across industries such as automotive, electronics, and life sciences. While Coherent
appears proximate to Oracle and Cisco in the product-market similarity space—likely because some
of the technologies it develops have applications in computing hardware—its competitive domain
remains distinct. It has only 9 direct competitors and does not share overlapping rivals with either
Oracle or Cisco. This indicates that despite some technological adjacency, Coherent operates in a
separate product-market space, implying a non-overlapping set of potential acquirers. Moreover,
the number of competitors is substantially lower—60 to 72% fewer—than that of Oracle or Cisco,
underscoring Coherent’s higher degree of specialization and niche positioning. This pattern is also
consistent with the idea that firms commercializing scientific innovations tend to face fewer direct
rivals.

Third, consider Boeing, which is positioned much farther away in the similarity space. Its focus
on large-scale aviation systems, defense technologies, and related infrastructure results in a distinct
competitive environment, with 12 identified competitors, including major incumbents in defense
and aerospace such as Hexcel, Lockheed Martin, General Dynamics, and Northrop Grumman.
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Figure 8: Product market networks for Oracle, Cisco, Coherent, and Boeing in 2016, constructed using text-based
measures of product market similarity derived from 10-K filings by Hoberg and Phillips (2025). Each node represents
a publicly traded U.S. firm, and edges indicate the degree of textual overlap in product descriptions. In each panel,
the focal firm (shown in dark red) and its closest competitors (lighter red) form a sub-network of firms with the highest
product-market similarity scores, illustrating key rivals within an industry. Oracle and Cisco occupy similar regions
of the network, share some competitors, and exhibit partial overlap. By contrast, Coherent—although spatially close
to Oracle and Cisco—shows no direct overlap or shared competitors, reflecting its distinct specialization. Boeing
is located much farther away, with no overlapping competitors. These patterns illustrate how text-based similarity
measures can identify clusters of close rivals and highlight their relative positions in the broader product market
space.
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3.6 Summary statistics

Table 2 reports summary statistics for the main variables of interest. Panel A presents the full
sample, while Panels B and C stratify startups by non-science-based and science-based categories.

Table 2: Summary statistics for main variables of interest.
Panel A: All startups (N = 5,823)

Mean SD Min p25 p50 p75 Max
Market-adjusted return, vi 0.010 0.027 -0.118 0.001 0.008 0.016 1.068
Acquirer surplus, Vi 365 1,432 -6,877 3 26 153 36,180
Acquisition price, P 423 2,054 0.002 20 66 231 80,269
VC, PE investment, Ts 59 474 0 2 13 42 29,505
Startup surplus, Vs 391 2,041 0 9 47 193 80,269
Joint surplus, Vt 756 2,489 0 35 127 495 78,732
Startup capture, λs 0.535 0.455 0.000 0.085 0.493 0.938 5.589
Acquirer market cap. 36,607 122,113 1 822 3,399 17,725 2,698,909
Science-based Startup 0.194 0.397 0 0 0 0 1
Potential acquirers 11 21 1 2 6 13 426
Startup revenue at acquisition 255 1,646 0 7 30 104 39,759

Panel B: Non-science based startups (N = 4,694)

Mean SD Min p25 p50 p75 Max
Market-adjusted return, vi 0.010 0.022 -0.111 0.002 0.008 0.016 0.431
Acquirer surplus, Vi 368 1,495 -6,877 3 26 146 36,180
Acquisition price, P 332 1,374 0.002 19 60 201 35,000
VC, PE investment, Ts 53 458 0 1 11 38 29,505
Startup surplus, Vs 303 1,355 0 9 43 168 35,000
Joint surplus, Vt 671 2,002 0 34 119 435 36,321
Startup capture, λs 0.527 0.459 0.000 0.078 0.466 0.930 5.589
Acquirer market cap. 36,131 128,803 2 829 3,186 15,715 2,698,909
Potential acquirers 10 20 1 2 6 13 426
Revenue at acquisition 249 1,508 0 9 32 114 36,750

Panel C: Science-based startups (N = 1,129)

Mean SD Min p25 p50 p75 Max
Market-adjusted return, vi 0.010 0.044 -0.118 0.001 0.007 0.014 1.068
Acquirer surplus, Vi 352 1,138 -1,719 2 30 190 12,506
Acquisition price, P 796 3,694 0.016 26 100 407 80,269
VC, PE investment, Ts 84 533 0 3 24 73 16,500
Startup surplus, Vs 757 3,688 0 10 75 355 80,269
Joint surplus, Vt 1,107 3,878 0 40 187 754 78,732
Startup capture, λs 0.565 0.438 0.000 0.128 0.575 0.962 2.822
Acquirer market cap. 38,567 89,514 1 811 4,968 27,087 908,886
Potential acquirers 13 22 1 2 6 13 215
Revenue at acquisition 278 2,138 0 2 18 74 39,759

Monetary values are reported in millions of U.S. dollars, except for market capitalization, which is reported in billions.

Substantial heterogeneity exists across industries. For example, in the life sciences, where
science-based startups are disproportionately represented, the average value capture is significantly
higher. To contextualize these patterns, Table 3 reports the distribution of science-based startups
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by industry. The results reveal some interesting patterns. On the one hand, some industries show
minimal variation in the composition of startups regarding their reliance on science or non-science—
e.g., software and consumer and business products and services.48 On the other hand, the fields
identified by current research, policymakers, and practitioners as having insufficient activity and
for which concerns are often raised are those that present a more mixed composition of startups.
These include startups developing novel scientific advances alongside others focusing on developing
more incremental technologies.

Table 3: Frequency of science-based startups by industry.
Industry Science (%)

Life Sciences 68.6
Semiconductors 26.2
Energy 24.2
Industrials, Manufacturing & Materials 31.4
Hardware 11.9
Software & IT Services 0.7
Consumer, Businesses Products & Services 0.0
Total 19.4

For example, in Industrial, Manufacturing & Materials, 31.4% of startups rely on science—these
include startups in Aerospace & Defense, Agriculture, Farm & Water, and Construction, Electri-
cal Equipment, and Machinery; in Energy, 24.2%—with the majority renewable energy startups;
in Semiconductors, 26.2%; and in Hardware, 11.9%. For example, in Aerospace and Defense, a
startup might develop cutting-edge drones that do not necessarily classify as science-driven but
are highly technological; conversely, advanced aerospace technologies like propulsion systems or
quantum-based navigation systems do fall within the science-based category. Similarly, in energy,
startups might focus on deploying renewable energy solutions or improving grid efficiency, which
may not involve new scientific advances; or develop photovoltaic materials for frontier energy stor-
age systems.

Most revealing, Figure 9 presents the average value capture by industry, distinguishing startups
that commercialize scientific innovations (light blue) from their counterparts (dark blue). Because
the focus is on the distinction between science and non-science startups, the two industries with
no variation are excluded (software and consumer, businesses products and services). First, the
average value capture for science-based startups tends to be lower across all industries. For instance,

48Companies are categorized into industries based on the Global Industry Classification Standard developed by
Morgan Stanley Capital International (MSCI) and aggregated into broader industry categories, following other studies
of startup activity across industries (e.g., Lerner and Nanda, 2020, 2023). Notably, the classification is based on
the market or industry the startup serves rather than the technology it develops. Startups under Software & IT
Services are generic developers of software technologies, encompassing also Artificial Intelligence. The Consumer
and Business Products and Services category encompasses Commercial & Professional Services; Communication
Services; Consumer Discretionary; Consumer Staples; Financial Services; Real Estate; and Transportation. The
Industrials, Manufacturing, and Materials category includes Capital Goods such as Aerospace & Defense; Agriculture,
Farm, & Water Equipment; Construction & Engineering; Construction Machinery; Materials, such as Chemicals and
Metals; and Light and Heavy Electrical Equipment. Hardware includes Communications Equipment; Technology
Hardware, Storage & Peripherals; and Electronic Equipment, Instruments & Components. Life Sciences includes
Biotechnology; Biotechnology Equipment & Software; Health Care Equipment; Health Care Providers & Services;
and Pharmaceuticals.
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in Energy as well as in Industrials, Manufacturing & Materials, the value capture for science-based
startups is the lowest across all sectors (0.41), followed by Hardware (0.47), and Semiconductors
(0.55). Furthermore, the contrast in value capture between science-based startups and their non-
science counterparts in these industries can be stark, with some science-based startups capturing
close to half the value of their industry counterparts (e.g., Energy).
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Figure 9: Average value capture by industry. The light blue bars represent startups that commercialize technolo-
gies based on novel scientific advances, while the dark bars represent non-science-based startups. The Industrials,
Manufacturing, and Materials category includes Capital Goods such as Aerospace & Defense; Agriculture, Farm, &
Water Equipment; Construction & Engineering; Construction Machinery; Materials, such as Chemicals and Metals;
and Light and Heavy Electrical Equipment. Hardware includes Communications Equipment; Technology Hardware,
Storage & Peripherals; and Electronic Equipment, Instruments & Components. Life Sciences includes Biotechnology;
Biotechnology Equipment & Software; Health Care Equipment; Health Care Providers & Services; and Pharmaceu-
ticals

Second, the life sciences show 1) substantially higher value capture for science-based innova-
tions than that in other industries and 2) the difference between science and non-science based
ones is small. Science-based innovations in the Life Science is composed mostly of Biotechnology
and Pharmaceuticals startups (48%), while non-science based innovations are from Health Care
Equipment (40%). As discussed in the following sections, this result could be attributed to the fact
that Biotech and Pharmaceuticals have well develop markets for technologies, allowing startups to
trade their technologies more efficiently (Arora et al., 2022).49

Further evidence on capture differences comes from simple stylized facts. Table 4 shows the
49Consumer and Business Products & Services and Software & IT services are omitted from the figure because

these are industries with virtually non-scientific innovations, and the focus here is on differences between these. In
terms of average capture, these two industries are at the bottom (0.64 and 0.59 respectively). While these results
might seem puzzling at first, I examine in Section 5 differences across industries and reconcile them.

41



distribution of startups across value capture quartiles, by sector and by whether the startup is
science-based. A clear pattern emerges: in all sectors except Life Sciences, science-based startups
are disproportionately concentrated in the bottom capture quartile. For instance, in Energy, 55%
of science startups fall in the bottom quartile compared to just 13% in the top; in Industrials,
Manufacturing, and Materials, 51% fall in the lowest quartile compared to 11% in the top. In
contrast, Life Sciences is the only sector where the distribution of science startups is relatively flat
across quartiles, hovering consistently around 70% in each.

Table 4: Distribution of startups across value capture quartiles by industry and type. Each
cell reports the percentage of startups in a given industry–type group (science-based or non-
science) that fall into each quartile of value capture. Quartiles are defined based on the
distribution of the startup’s share of value capture at exit: Q1 = 0–27%, Q2 = 28–72%, Q3
= 73–98%, and Q4 = 99–559%. In all sectors except Life Sciences, science-based startups
are disproportionately concentrated in the bottom capture quartile and underrepresented
in the top. In Life Sciences, the distribution is notably uniform, with science-based startups
accounting for roughly 70% of deals across all quartiles.

Capture Industrials, Mfg.
Quartile Energy Hardware & Materials

Non-science Science Non-science Science Non-science Science

Q1 45% 55% 74% 26% 49% 51%
Q2 83% 17% 83% 17% 59% 41%
Q3 89% 11% 88% 12% 84% 16%
Q4 87% 13% 92% 8% 89% 11%

Life Sciences Semiconductors Total

Non-science Science Non-science Science Non-science Science

Q1 30% 70% 53% 47% 44% 56%
Q2 26% 74% 68% 32% 46% 54%
Q3 31% 69% 73% 27% 51% 49%
Q4 29% 71% 74% 26% 51% 49%

This suggests that in most sectors, science-based ventures face significant challenges in retaining
value at exit, while in Life Sciences the structure of the market or institutional pathways such
as markets for technology may mitigate this disadvantage. Overall, the evidence supports the
interpretation that value capture constraints are tightly linked to the nature of the innovation and
the surrounding commercialization environment. These statistics are further illustrated in Figure
10.
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Figure 10: Share of science-based startups across the value capture distribution. This figure plots the share of
startups that are science-based within bins of the value capture distribution. The share declines sharply with higher
value capture: science startups are overrepresented in the lower end and underrepresented in the upper end of the
distribution. A startup in the bottom quartile is 3.2 times more likely to be science-based than one in the top quartile,
consistent with systematic differences in value retention at exit.

4 Empirical analysis: Science-based startups capture less, gener-
ate more value

I begin by documenting differences in value capture and creation between science-based and non-
science-based startups. I employ OLS regressions with fixed effects on a sample of 5,823 startups
acquired by U.S. publicly listed companies. The general specification is as follows:

yi = β0 + β1scii + β
∑

Xi + θi + ξi + ϵi, (7)

where the dependent variable yi is either the startup’s value capture, λs, or the startup’s joint
surplus, Xt, at the time of acquisition. The analysis is conducted at the startup level, i. sci ∈ [0, 1]
is an indicator for whether the startup i commercializes scientific innovations.50 X is a vector of
control variables, θ represents grouped industry-year fixed effects to account for dynamics across
industries and years, and ξ denotes startup-level fixed effects for the country of headquarters,
capturing technological, market, and regulatory differences, among other factors, based on the
startup’s location. The main results are reported in Table 5.

50The results are robust to using the discrete variable output by the LLM sci ∈ [1, 5], which captures the likelihood
that a startup is science-based, as well as to alternative classification thresholds for the indicator.
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Table 5: OLS estimates of value capture and creation (joint surplus) for science-based startups.
The table reports OLS regressions examining the relationship between a startup’s science-based
classification and its value capture—columns (1)–(3)—and (log) value creation—columns (4)–(6)—
in acquisition. The specifications add controls for external financing (VC, PE), acquirer market
capitalization (log), and include industry × year and country fixed effects. Standard errors are
clustered at the industry-year and startup country level. The results show a consistent value capture
penalty for science-based startups, even as they tend to generate higher total value.

Value Capture Value Creation
(1) (2) (3) (4) (5) (6)

Science-based Startup -0.147∗∗∗ -0.150∗∗∗ -0.143∗∗∗ 0.180∗∗∗ 0.074∗∗∗ 0.008
(0.023) (0.023) (0.020) (0.034) (0.025) (0.024)

VC, PE Investment (log) 0.007∗∗∗ 0.028∗∗∗ 0.269∗∗∗ 0.043∗∗∗

(0.003) (0.003) (0.016) (0.008)
Acquirer market cap. (log) -0.060∗∗∗ 0.729∗∗∗

(0.006) (0.008)
Constant 0.610∗∗∗ 0.593∗∗∗ 1.861∗∗∗ 18.633∗∗∗ 17.984∗∗∗ 2.482∗∗∗

(0.003) (0.007) (0.123) (0.005) (0.039) (0.156)
Industry X Year FE Y Y Y Y Y Y
Country FE Y Y Y Y Y Y
N 5,823 5,823 5,823 5,823 5,823 5,823
R2 0.057 0.058 0.101 0.095 0.145 0.774

Standard errors clustered at the Industry-Year and Country level
* p<.1, ** p<.05, *** p<.01

4.1 Value capture

Startups commercializing scientific innovations face significantly greater challenges in value capture.
Table 5, column (1) shows that startups commercializing scientific innovations experience an 14.7
percentage-point reduction in value capture, from 61.0 percentage points to 46.3—a 24.1% decrease.
In monetary terms, if the average science-based transaction ($796 million) had captured value at
the same rate as non-science startups, average net surplus, or returns, for these ventures would
have increased by $253 million.

Columns (2) and (3) refine the analysis by adding two key controls at both the startup and
acquirer levels. Importantly, the negative coefficient on science based startup remains quite stable
and highly significant. First, I control for the total investment received by the startup, a factor
that plausibly influences value capture. The results demonstrate a significant relationship: the more
investment a startup accumulates before the acquisition, the greater its value capture. However,
this relationship is correlational and may reflect two opposing dynamics. On one hand, higher
investment could de-risk the technology and market application, help find customers, or could be
used to threat with independent commercialization, in all cases improving the startup’s bargaining
position. On the other, it might show that VCs direct greater funding toward startups with ex-ante
favorable exit conditions and, thus, higher potential for value capture.51

51I examine the relationship between investment and value capture in greater detail in the Appendix. As a preview,
in results not reported here, adding an interaction for Science × Investment, I find that while increased investment
enhances value capture for both science and non-science startups, the rate of increase for non-science startups is
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Second, I control for the acquirer’s market capitalization, a proxy for firm size. The estimates
show that larger acquirers capture a greater share of transaction rents, leaving less for the startup.
This effect may stem from stronger complementary assets—such as distribution networks, manufac-
turing capacity, and prior related technological investments—that enable them to generate higher
returns from the acquired technology, greater bargaining leverage in negotiations, and a correlation
with the number of potential acquirers. Likewise, the coefficient on the science-based startup indi-
cator remains stable, suggesting that other unobservables associated with commercializing scientific
innovations continue to drive the effect. In the next section, I examine the underlying mechanisms
and unpack these patterns in greater detail.

4.2 Value creation

Next, I turn to columns (4) to (6) (Table 5), where the dependent variable is the logged value
created (joint surplus). The analysis parallels that for value capture. The results indicate that,
although science-based startups in the sample capture less value, they actually generate a larger
total value. Column (4) shows that startups commercializing scientific innovations generate sig-
nificantly more value than their counterparts—approximately a 19.7% increase. Given an average
value created of $1.11 billion for science-based startups, this corresponds to roughly $250 million
more per transaction of value created than their counterparts.

In columns (5) and (6), additional controls for total funds raised and the acquirer’s size are
introduced, which slightly attenuates the coefficient on Science but does not undermine the core
finding. The investment coefficient remains significant, indicating that higher levels of external
funding are still associated with greater total value creation. More importantly, even after account-
ing for the amount of investment received, science-based startups continue to generate substantially
more joint surplus than their non-scientific counterparts. The influence of acquirer size further sug-
gests that larger firms may shape the total value created, consistent with the theoretical framework
and as I explore in further detail in the next section. Nevertheless, the primary conclusion, that
science-based startups generate higher overall value, remains robust across specifications.

Consistent with the theory, these pattern helps explain why investment and entry into science-
based ventures may remain rational in my sample of analysis, despite lower value capture for the
startup itself. If the increase in total value creation is sufficiently large, it can offset weaker indi-
vidual bargaining outcomes, making expected returns attractive when evaluated over a portfolio of
investments. In other words, even when a smaller share of the surplus accrues to the startup, the
absolute magnitude of returns may still justify entry and sustained capital flows into science-based
entrepreneurship. This logic also aligns with observed patterns in venture capital, where investors
often balance lower capture rates with the potential for outsized exits in high-value scientific inno-
vations.
nearly 50% higher. This suggests that the returns to investment in terms of capture, are more efficient in non-science
firms. As discussed, this is consistent with the theoretical framework and potentially due to lower commercialization
barriers, faster scaling opportunities, or more direct market applications. In contrast, science-based startups face
structural challenges that limit their ability to translate investment into proportional gains in value capture.
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4.3 Industry Heterogeneity

The results reported so far mask important cross-industry heterogeneity. Some subsectors, such
as Biotech, are dominated by science-oriented firms (where 94.5% of the startups are classified
as science based), whereas others are more mixed (e.g., Energy, with 24.2% science and Industri-
als, Manufacturing & Materials with 31.4% science), and still others, like Consumer and Business
Products & Services as well as Software and IT startups predominantly consist of non-science inno-
vations. Consequently, the aggregate results may be attenuated or amplified by these differences.
To explore how these differences play out across industries, I extend the baseline specification
(equation 7) to include industry indicators and interact them with the science indicator. Figure 11,
Panel A, plots the marginal effects (the change in expected value capture from being science-based,
holding all other variables constant at means) at the industry level and Panel B at the subindustry
level.52
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(a) Marginal effect by industry.
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(b) Marginal effect by subindustry.
Figure 11: Comparison of how the marginal effect—the change in expected value capture associated with being science-
based, holding all other variables constant at means—varies across industries (a) and subindustries (b). Confidence
intervals are plotted at the 95% level. The figure shows that, across both industry and subindustry classifications,
science-based startups consistently capture a smaller share of transaction rents than their non-science counterparts.
The effect is generally negative and sizable in several sectors—notably energy, industrials, materials, biotechnology,
and related subfields—indicating that the value capture penalty is not confined to a single domain but appears across
a range of science-intensive industries.

The findings indicate that science-based startups in mixed-composition sectors tend to capture
less value than their non-science counterparts. For instance, at the industry level, Energy exhibits
the largest penalty, with a 35.5% difference in value capture for startups commercializing scientific
innovations, followed by Industrials, Manufacturing & Materials (35.4%), Hardware (24.6%), and
Semiconductors (13.7%), all of which are highly statistically significant. Notably, these industries
align with those often cited as experiencing insufficient innovation activity (e.g., Lerner and Nanda,
2020). At the subindustry level, the patterns are similar, with Aerospace & Defense; Agriculture,
Farm & Water; Construction, Electrical & Machinery; Hardware; Materials; and Renewable Energy
all facing penalties ranging from 22.4% to 42.5% in value capture.

52The Appendix provides the results of the main specification.
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Interestingly, the Biotechnology sector exhibits a reversed pattern. The estimated penalties
are either negligible or positive, meaning that scientific innovations capture more value than their
non-science counterparts. This finding aligns with the composition of the Biotechnology sector,
where the majority of startups are science-based, and with the idea of more efficient markets
for technology. Likewise, one could argue that, in these industries, ex-ante contracting is more
feasible due to the relatively well-defined pathways from scientific discovery to commercialization.
Unlike other sectors, Biotech often benefits from deep, established markets with clear demand for
innovative treatments and therapies. Furthermore, intellectual property has proven to be more
effective on these innovations, and the nature of Biotech innovations often allows for early-stage
partnerships, licensing agreements, or milestone-based financing, enabling startups to negotiate
terms that reflect the potential value of their research (Arora et al., 2022).

Figure 12 reports the marginal effects of being science-based on value creation, holding all
other variables constant at their means. At the industry level, science-based startups generate
significantly more total value in Hardware, Industrials, Manufacturing & Materials, and the Life
Sciences. In each of these sectors, the estimated coefficient is positive and statistically significant,
indicating that scientific ventures create more surplus than their non-science counterparts. By
contrast, the coefficients for Energy and Semiconductors are small and statistically insignificant.
At the subindustry level, the picture is more heterogeneous. Science-based startups exhibit large
and significant value creation advantages in Pharmaceuticals, Biotechnology Equipment & Soft-
ware, and Construction, Electrical & Machinery, while other subfields such as Renewable Energy,
Biotechnology, and Materials show weaker or statistically insignificant differences.
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(b) Marginal effect by subindustry.
Figure 12: Comparison of marginal effects of science on value creation by industry and subindustry, with 95% confi-
dence intervals, holding all other variables constant at their means. Science-based startups show higher value creation
in several sectors—most notably in hardware, industrials, manufacturing, and pharmaceuticals—while differences are
statistically insignificant in others, indicating that the value creation premium is concentrated in specific science-
intensive industries.
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4.4 Heterogeneous Effects of Investment and Time to Exit

A natural next step is to examine how capital investment and time to exit, two central inputs
at the aggregate level, shape value creation and capture. As reported in Table 5, venture capital
investment is strongly and positively associated with both outcomes. I omit time to exit from the
baseline specification due to its high collinearity with investment, though both variables broadly
capture the intensity and duration of development prior to acquisition. Furthermore, building
on the heterogeneity patterns discussed above, it is instructive to examine these effects across
industries, providing initial evidence on whether investment and time operate through common
channels across industries and startup types, or whether their roles differ in structurally distinct
ways. This analysis also serves as a preliminary test of the mechanisms developed in the following
section.53

The conceptual framework introduced earlier implies that in software and consumer-oriented
industries, investment and time are often deployed to develop commercialization capabilities, de-
risking demand, building distribution networks, acquiring customers, and scaling operations. These
activities not only indeed scale the startup and drive downstream value creation, but also strengthen
the startup’s outside options in an eventual transfer, reducing reliance on any single acquirer and
improving its bargaining position. In such settings, one would expect both value creation and
capture to increase with investment and time to exit.

In contrast, science-based ventures typically require more substantial investment in R&D and
greater effort to de-risk the underlying technology, and thus it is reasonable to assume that capital
is primarily allocated toward technological advancement rather than market development. At the
same time, if these ventures face structural frictions to scaling, such as limited access to contract
manufacturing and distribution, then capital is unlikely to build or expand the external commer-
cialization pathways they depend on. Likewise, capital and time are even less likely to affect the
structure of downstream acquisition markets. As a result, in these settings, investment and time
to exit may increase the total value of the innovation but do little to improve the startup’s outside
option and bargaining position, resulting in limited gains in value capture.

To examine these relationships, I extend the specification from Table 5. The specification I
estimate is as follows:

yi = β0 + β1 log(Investmenti) + β2Industry
′
i + β3 log(Investmenti) × Industry

′
i + γi + ξi + ϵi, (8)

53The estimated effect of venture capital investment on value creation and capture should not be interpreted as
causal, of course. Larger investment rounds may reflect unobserved startup quality, higher commercial potential,
or stronger backing by top-tier investors—all of which could independently affect both outcomes. In this sense, the
observed correlation likely captures a combination of treatment and selection effects. That said, the heterogeneity in
the returns to investment across sectors, particularly the weaker relationship between investment and value capture
in science-based industries, is less easily explained by selection alone. If selection were the dominant driver, one
might expect stronger investors to concentrate in industries with better ex-ante commercialization prospects and,
consequently, a tighter link between investment and capture. The absence of such a pattern in science-based sectors
is consistent with the view that structural constraints, rather than investor or venture quality, limit the ability to
translate investment into bargaining power.
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where the dependent variable yi is either the startup’s value capture (λs) or the joint surplus at
exit (Xt). Investment denotes the total private capital raised by the startup prior to acquisition, and
Industry’ indicates the startup’s industry classification, as further defined below. Since industry
enters directly into the specification, I include only year fixed effects (γ) to account for temporal
dynamics and country-of-headquarters fixed effects (ξ) to control for geographic heterogeneity.

For ease of interpretation, in this analysis I aggregate startups into broader industry groups,
though these aggregations simply reflect patterns observed at the level of individual industries; I
denote these aggregated industries Industry’. Software, Consumer/Business Products and Services,
and Life Sciences remain as distinct categories, retaining their original industry classifications. By
contrast, I combine startups in Energy, Hardware, Industrials, Manufacturing and Materials, and
Semiconductors into a single group. For brevity, I refer to this set of industries as Deep Tech.

Within this aggregated Deep Tech group, the relevant distinction for the analysis is not indus-
try alone, but whether the startup is developing science-based innovations. As posed earlier, these
industries contain a heterogeneous mix of ventures, ranging from service-oriented or engineering-
driven firms to startups advancing novel scientific discoveries. For example, a digital services plat-
form in the energy sector faces fundamentally different technical and commercialization challenges
than a carbon capture venture based on advanced materials science. To account for this variation,
I further divide this Deep Tech group into two subgroups: those developing science-based inno-
vations and those that do not. This classification allows for a more precise empirical test of the
theoretical framework, which predicts systematic differences in value creation and capture between
science-based and non-science-based ventures.

The results are presented in Figure 13. For brevity and clarity of exposition, I plot the estimated
coefficients and their 90% confidence intervals. Since the patterns are similar when using time to
exit, I report in the manuscript only the results based on accumulated investment, as it more di-
rectly captures the scale and intensity of development efforts prior to acquisition. Panel (a) shows
that, consistent with the framework, the returns to capital in terms of value capture are strongest
for ventures in Software, where the share of value captured rises from approximately 0.55 to 0.9 as
cumulative investment increases. The estimated slope is both statistically significant and econom-
ically meaningful, suggesting that investment translates directly into stronger bargaining positions
and higher private returns driven by gains in capture, holding creation constant. Life Sciences
and Consumer/Business Products & Services exhibit similarly positive relationships, though with
somewhat more moderate slopes compared to Software. In Energy, Hardware, Industrials, Manu-
facturing and Materials, and Semiconductors (labeled as Deep Tech industries), ventures that do
not commercialize scientific innovations still exhibit positive returns to capital in terms of value
capture, with a slightly smaller slope than in other industries, although the differences are not
statistically significant. Notably, the most revealing pattern emerges among ventures in these in-
dustries that do commercialize science-based innovations (Deep Tech Industries, Science Ventures).
As shown, their average value capture is the lowest among all groups and it appears largely insensi-
tive to the amount of capital deployed. Across four orders of magnitude in cumulative investment,
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the share of value captured remains roughly flat, around 0.50. This pattern is consistent with
the theoretical prediction that, in science-based ventures, investment is primarily directed toward
technical validation rather than commercialization infrastructure, and that key constraints—such
as thin buyer markets and limited access to complementary assets—are not mitigated with capital.
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Figure 13: This figure plots the relationship between cumulative VC/PE investment and startup value capture and
value creation, across five industry groups. Confidence intervals represent 90% bounds. The Deep Tech group
comprises ventures in Energy, Hardware, Industrials, Manufacturing and Materials, and Semiconductors, and is
further divided into two subgroups: ventures that commercialize scientific innovations and those that do not. The
relationship between investment and value capture varies sharply across industries. In Software, capture increases
with investment, consistent with capital building stronger outside options and bargaining power. In contrast, capture
remains flat for science-based Deep Tech ventures, suggesting that structural commercialization constraints persist
even as capital is deployed and technologies developed. All sectors exhibit a positive association between investment
and value creation, though the underlying mechanisms may differ—ranging from market de-risking in Software and
Consumer sectors to technological development in science-based ventures.
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In terms of value creation, all industries exhibit a positive relationship with cumulative invest-
ment, indicating that greater capital deployment is indeed associated with the development of more
valuable innovations. However, the underlying mechanisms may differ. In software and consumer-
facing industries, returns to investment may primarily reflect the resolution of market risk, such
as product–market fit or customer acquisition, while in science-based ventures, investment likely
contributes more directly to reducing technological uncertainty. Importantly, while most industry
slopes appear similar, only Life Sciences exhibits a statistically distinct trajectory, with a steeper
and more precise relationship between investment and value creation. This suggests that capital
plays an especially central role in driving innovation outcomes in this industry, potentially due to
underlying technological complexity, market-related issues, or merely selection effects. The specific
mechanism remains unclear and warrants further investigation.

5 Mechanism: Exit Conditions, Value Capture, and Value Cre-
ation

In this section, I examine the central mechanism described in the theoretical framework that helps
explain the value creation and capture patterns outlined above: the structural conditions of the
startup exit environment. These include (i) acquisition market structure—the number and size
distribution of potential acquirers—and (ii) the startup’s outside options, defined as its capacity
to scale commercialization independently. The results are descriptive rather than causal, but they
are consistent with the theoretical framework developed earlier and align with its key predictions.

5.1 Market structure of incumbent acquirers

I begin by documenting stylized facts on how science-based and non-science-based startups differ
in the characteristics of their pool of potential acquirers. As detailed in Section 3.5, I estimate
the pool of potential acquirers with the acquirer’s product-market competition: the count of rivals
in the Hoberg and Phillips (2016, 2025)’s text-similarity network.54 After identifying the set of
potential acquirers, I characterize the size distribution and other attributes of its member firms.
Furthermore, for most of the empirical analysis, I group the number of potential acquirers into
deciles instead of using raw or log values. The distribution of potential acquirers is right-skewed
but does not follow a log-normal, making logs problematic and raw counts unduly influenced by
outliers. Decile indicators temper the leverage of extreme values and do not impose an elasticity
interpretation. They also reduce sensitivity to the exact similarity cut-off used in the Hoberg and
Phillips dataset that defines a potential acquirer, reducing measurement error.

Figure 14 illustrates acquisition-market characteristics by startup type. Panel (a) depicts the
distribution of the number of potential acquirers. To account for industry-level differences (e.g.,

54The sample size in the following analyses is slightly smaller than in previous sections due to missing data in the
matching process with this dataset.
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pharmaceuticals exhibit more acquirers overall than renewables), I parse out industry fixed effects.55

The distribution for non-science-based startups lies to the right of that for science ventures, indicat-
ing systematically thicker acquisition markets for non-science ventures. On average, science-based
ventures face 9.1% fewer acquirers, and this difference varies substantially across industries. For
example, science-based startups in Hardware as well as in Industrials, Manufacturing, and Materi-
als face more than 30% fewer potential acquirers than their counterparts. Panel (b) shows the log
size of those potential acquirers, measured as market capitalization at the deal announcement date.
Science startups acquirers tend to be larger firms—53% larger on average—, whereas non-science
startups encounter relatively smaller incumbents. Together, the two panels illustrate that science-
based ventures face a narrower acquirer pool, but the firms in the pool tend to be substantially
larger.
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Figure 14: Acquirer-market structure by startup type. Panel (a) plots the industry-demeaned kernel density of
the number of potential acquirers; panel (b) shows the corresponding density of log market capitalization of those
acquirers. Panels (c) and (d) relate acquirer size to market thickness: panel (c) plots a non-parametric estimation of
firm size (log market capitalization) across deciles of the rival-count distribution separately for science and non-science
startups, while panel (d) plots the marginal effect of potential acquirers decile on average firm size based on OLS
estimation, with 95 percent confidence bands. Science-based startups face more numerous acquirers on average, yet
additional rivals come from progressively smaller firms, reversing the positive size–number correlation observed for
non-science ventures.

Panels (c) and (d) deepen in the market structure by relating acquirer size to market thick-
55For each observation, I regress the variable of interest on industry dummies and use the residuals. The horizontal

axis therefore measures deviations from the industry mean (zero).
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ness. Panel (c) plots a non-parametric estimation of average firm size as a function of number of
acquirers. For non-science startups (left sub-panel), average acquirer size rises with the number
of rivals, indicating that thicker markets also involve larger incumbents. Conversely, for science-
based startups (right sub-panel) the slope is reversed: thin markets are populated by very large
incumbents, whereas additional rivals come from progressively smaller firms. Panel (d) confirms
these relationships with a parametric estimation, plotting estimates with 95% confidence intervals
resulting from OLS regressions that interact the number of acquirers with the type of startup.

These empirical patterns map directly to the stylized facts outlined in the theoretical framework.
Consistent with the Stylized Fact 1, science-based startups operate in more concentrated acquisition
markets, with systematically fewer potential acquirers. Moreover, the negative relationship between
the number and size of potential acquirers for science-based ventures (Stylized Fact 2.1 ) contrasts
with the positive relationship observed for non-science-based ventures (Stylized Fact 2.2 ).

To formally examine the relationship between incumbents’ market structure, value capture, and
value creation, I estimate OLS regressions. I start by examining the effect of market structure on
capture and creation. To test for heterogeneous effects, the analysis includes interactions with an
indicator for science-based startups, allowing the response of value capture to market structure to
differ between science and non-science ventures. The main specification is:

yi = β0 + β1 scii + β2 acquirer_decilei + β3 acquirer_decilei × scii + θi + ξi + εi, (1)

where yi is the main variable of interest (startup’s value capture share, λ, or value created,
Vt, in startup i); scii is an indicator for science-based startups; acquirer_decilei indexes the decile
of potential acquirer counts; θi represents industry–year fixed effects; and ξi represents startup
country fixed effects. The interaction term β3 tests whether acquirer-pool thickness influences
science and non-science startups differently, while the fixed effects absorb common shocks within
technology–market–year cells and acquirer-specific heterogeneity. Standard errors are clustered at
the Industry-year and country level. Table 6 presents the results for value capture.

In column (1), the dependent variable is the number of potential acquirers (decile). As shown in
the facts above, the coefficient on the science-based indicator is negative and statistically significant,
indicating that science-based startups face fewer potential acquirers relative to non-science startups.
On average, science startups have 9.11% fewer acquirers, with the finding supporting the idea that
science startups often commercialize highly specialized or nascent technologies and thus face a more
limited set of acquirers that can develop the technologies further, with the necessary capabilities.
Columns (2) through (5) explore how science and the number of potential acquirers relate to value
capture. Across all specifications, the coefficient on science-based is negative and highly significant,
aligned in magnitude with the results reported in previous sections. The coefficient on the number
of potential acquirers is close to zero and not significant in column (3), suggesting that broader
competition among acquirers does not enhance the startup’s bargaining power. However, this
coefficient masks heterogeneity. Importantly, column (5) includes an interaction term between
Science and Potential acquirers, which is positive and significant. An increase in the number of
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potential acquirers from the mean to one standard deviation above the mean is associated with
a 25.70% increase in value capture for science-based startups, compared to a null increase for
non-science startups. Overall, these results support Propositions 2.1 and 2.2.

Table 6: Value capture: Science-based startups and market structure. This table presents OLS
regressions examining how acquisition market structure relates to startup type and value capture.
Column (1) uses the number of potential acquirers (in deciles) as the dependent variable and shows
that science-based startups face significantly thinner acquirer markets. Columns (2)–(5) use the
startup’s share of total value created as the dependent variable. Across all specifications, science-
based startups systematically capture less value at exit, with point estimates ranging from 15 to
22 percentage points. The number of potential acquirers alone has little effect—columns (3)–(4)—
, but column (5) shows that it significantly increases value capture for science-based startups
through a positive interaction term. This pattern supports the theoretical prediction that acquirer
competition disproportionately benefits science-based startups. All models include industry-year
and country fixed effects. Standard errors are clustered at the industry-year and country level.

Potential acquirers Value capture
(1) (2) (3) (4) (5)

Science-based Startup -0.190∗∗∗ -0.153∗∗∗ -0.152∗∗∗ -0.215∗∗∗

(0.062) (0.028) (0.028) (0.045)
Potential acquirers (decile) 0.003 0.002 0.000

(0.002) (0.002) (0.002)
Science × Potential acquirers 0.012∗∗∗

(0.004)
Constant 5.281∗∗∗ 0.554∗∗∗ 0.511∗∗∗ 0.542∗∗∗ 0.554∗∗∗

(0.008) (0.005) (0.009) (0.013) (0.015)
Industry × Year FE Yes Yes Yes Yes Yes
Country FE Yes Yes Yes Yes Yes
N 4,958 4,958 4,958 4,958 4,958
R2 0.106 0.079 0.070 0.079 0.080

Standard errors clustered at the Industry-Year and Country level
* p<.1, ** p<.05, *** p<.01

Table 7 explores these relationships in terms of value creation. Across all specifications, science-
based startups are associated with significantly higher value creation. The number of potential
acquirers also has a consistently positive and significant effect on value creation. However, the
interaction term in column (4) reveals a relevant asymmetry: the positive effect of acquirer pool
size is significantly dampened for science-based startups, as shown by the negative interaction
coefficient.

These patterns map onto the theoretical predictions from the conceptual framework. In the
model, science-based startups typically face a more concentrated acquirer landscape, where the
largest incumbents are most capable of realizing the innovation’s full value. When the number of
bidders increases, average acquirer size falls more sharply for science-based startups, decreasing the
potential value created, even if competition nominally increases. In contrast, non-science startups
increase acquirer’s surplus as the pool expands, since their innovations are less specialized and more
easily absorbed across a wide range of acquirers. Overall, these results support Propositions 1.1
and 1.2.

Figure 15 illustrates these results. Panels (a) and (c) show that value capture rises strongly with
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Table 7: Value creation: Science-based startups and acquisition market struc-
ture. This table presents OLS regressions where the dependent variable is
the log of value creation. All models include industry-year and country fixed
effects, and standard errors are clustered at the industry-year and country
level. Column (1) shows that science-based startups generate, on average, sig-
nificantly more value at exit than non-science startups. Column (2) adds the
number of potential acquirers (decile), which has a positive and significant
association with value creation. Column (4) includes the interaction term
between Science and Potential acquirers, which is negative and significant,
indicating that the marginal effect of expanding the acquirer pool on value
creation is lower for science-based startups.

Value creation (log)
(1) (2) (3) (4)

Science-based Startup 0.124∗∗∗ 0.131∗∗∗ 0.979∗∗∗

(0.027) (0.023) (0.096)
Potential acquirers (decile) 0.036∗∗∗ 0.036∗∗∗ 0.067∗∗∗

(0.007) (0.007) (0.010)
Science × Potential acquirers -0.159∗∗∗

(0.019)
Constant 18.665∗∗∗ 18.503∗∗∗ 18.476∗∗∗ 18.311∗∗∗

(0.005) (0.026) (0.026) (0.048)
Industry × Year FE Yes Yes Yes Yes
Country FE Yes Yes Yes Yes
N 4,958 4,958 4,958 4,958
R2 0.103 0.105 0.106 0.115

Standard errors clustered at the Industry-Year and Country level
* p<.1, ** p<.05, *** p<.01

acquirer pool size for science-based startups, while remaining flat for non-science ones. In contrast,
Panels (b) and (d) reveal that value creation increases with the number of acquirers for non-science
startups, but declines for science-based ventures. These opposing slopes are consistent across both
non-parametric (top row) and parametric (bottom row) approaches. The non-parametric plots
provide flexible visual confirmation without functional form assumptions, while the parametric
specifications align with the regression estimates presented in Tables 6 and 7.

Importantly, the creation patterns reflect the structural mechanism described in the conceptual
framework: in science-based markets, expanding the number of acquirers may bring in smaller,
less capable incumbents, reducing the total value that can be realized from the innovation. Thus,
while the number of potential acquirers boosts bargaining power for science-based startups, it
simultaneously reduces average acquirer surplus and, thus, joint surplus, generating a divergence
between value capture and value creation as markets thicken.
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(c) Value capture v. Potential acquirers: Parametric, Table
6, (6)
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(d) Value creation v. Potential acquirers: Parametric, Table
7, (5)

Figure 15: Value creation and capture by number of potential acquirers, science vs. non-science startups. The figure
plots value creation and value capture (startup share of surplus) against the number of potential acquirers, separately
for science-based and non-science startups. Panels (a) and (b) show non-parametric estimates by quartile bins; Panels
(c) and (d) show parametric estimates using deciles. Value capture increases with the number of potential acquirers
for science-based startups but remains flat for non-science ones. Value creation rises with the number of potential
acquirers for non-science startups but declines for science-based ones, consistent with a drop in average acquirer size
as acquirer sets expand.
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5.2 Startup’s Outside Options: Independent Scaling

I now turn to analyzing how outside options mediate the results, showing that they account for the
remaining patterns predicted by the framework. Specifically, I examine the relationship between
a startup’s ability to commercialize independently, proxied by revenue generation at the time of
acquisition, and its value capture and creation at exit. In line with the theoretical framework,
Table 8, column (1), shows that science startups are significantly less likely to generate revenue.
On average, the revenue generated at exit is reduced by more than one decile, or a 40% decrease.
This is consistent with the idea that these startups face steeper barriers to independent scaling
(Stylized Fact 3 ).

Table 8: Value capture: Role of revenue and acquisition market structure. This table analyzes how
value capture at exit varies with startups’ commercialization capacity (proxied by revenue deciles)
and acquisition market structure. Column (1) shows that science-based startups are significantly
less likely to generate revenue. Columns (2)–(7) examine value capture. The negative effect of
being science-based vanishes once revenue is included, column (3) onward, suggesting that weaker
outside options fully explain the capture gap. The number of potential acquirers has a positive and
significant effect, particularly for science-based ventures, columns (5)–(6), consistent with greater
sensitivity to market competition when fallback options are weak.

Revenue Value Capture
(1) (2) (3) (4) (5) (6)

Science-based Startup -1.069∗∗∗ -0.023 0.008 -0.057 -0.132 -0.047
(0.093) (0.024) (0.052) (0.036) (0.091) (0.081)

Revenue (decile) 0.048∗∗∗ 0.049∗∗∗ 0.049∗∗∗ 0.049∗∗∗ 0.059∗∗∗

(0.002) (0.002) (0.002) (0.003) (0.002)
Science × Revenue (decile) -0.006 -0.001 -0.004

(0.006) (0.007) (0.006)
Potential acquirers (decile) 0.009∗∗∗ 0.006∗∗ 0.010∗∗∗

(0.002) (0.003) (0.002)
Science × Potential acquirers 0.017∗∗ 0.005

(0.008) (0.007)
Acquirer size (log) -0.045∗∗∗

(0.007)
Constant 5.637∗∗∗ 0.407∗∗∗ 0.399∗∗∗ 0.348∗∗∗ 0.362∗∗∗ 1.284∗∗∗

(0.013) (0.004) (0.015) (0.016) (0.023) (0.168)
Industry × Year FE Yes Yes Yes Yes Yes Yes
Country FE Yes Yes Yes Yes Yes Yes
N 3,539 3,539 3,539 3,539 3,539 3,539
R2 0.215 0.180 0.180 0.193 0.195 0.236

Standard errors clustered at the Industry-Year and Country level
* p<.1, ** p<.05, *** p<.01

The rest of Table 8 shows that revenue is a strong predictor of value capture. Starting in column
(2), the coefficient on Science becomes statistically insignificant and remains so across all specifi-
cations, indicating that once I control for revenue generated, the raw capture gap between science
and non-science startups disappears. This suggests that the differential in surplus extraction stems
from systematic differences in outside options. Interestingly, the interaction between Science and
Revenue decile is never significant, implying that revenue matters equally for both types of startups:
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once a science-based firm reaches revenue generation, its bargaining disadvantage vanishes. Even
after controlling for revenue, the number of potential acquirers continues to significantly affect value
capture, particularly for science-based startups. The interaction term between Science and Poten-
tial acquirers is positive and significant in columns (4) to (6), consistent with the auction-theoretic
prediction that increased bidder competition shifts surplus toward the seller.56

Figure 16 illustrates how the relationship between value capture and the number of potential
acquirers differs based on a startup’s ability to commercialize independently. I plot non-parametric
conditional means by quartile bins, allowing the raw data to speak without imposing functional
form assumptions.
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(a) Value capture v. Potential acquirers: Startups with rev-
enue below the median
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(b) Value capture v. Potential acquirers: Startups with rev-
enue above the median

Figure 16: Value capture by number of potential acquirers, split by revenue. The figure plots non-parametric
conditional means of value capture across quartiles of potential acquirers, separately for science-based and non-
science startups. Panel (a) shows startups with revenue below the median; Panel (b) shows those above. Among
low-revenue startups, science-based ventures capture significantly less value, but capture rises sharply with the number
of potential acquirers, consistent with stronger dependence on acquirer competition to offset weak outside options.
Among high-revenue startups, capture levels are high and similar across groups, with little sensitivity to market
structure. These patterns support the model’s prediction that reservation values drive heterogeneity in rent-sharing
outcomes.

Panel (a) shows that among startups with below-median revenue, science-based ventures capture
significantly less value than their non-science counterparts, but their capture increases sharply
with the number of potential acquirers, consistent with the auction model prediction that market
competition helps overcome weak outside options. The flatter line for non-science ventures may

56It is worth noting that revenue is a noisy proxy for independent scaling. For instance, a firm may report
revenue at exit that stems from a single customer—possibly even the acquirer—thus overstating its true ability
to scale independently. Moreover, some startups may engage in nominal revenue—generating activities (e.g., pilot
projects or non-recurring engineering contracts) that are not indicative of a sustainable business model. Others may
intentionally delay commercialization in favor of technology development. These issues introduce both measurement
error and potential endogeneity, which bias the estimated relationship between revenue and value capture. Likewise,
revenue implicitly bundles multiple organizational capabilities. It not only reflects a startup’s ability to produce a
sellable good or service—often requiring significant manufacturing or regulatory readiness—but also its ability to
access downstream markets through distribution, marketing, and sales infrastructure. This distinction is particularly
salient in science-based ventures. A startup may be able to manufacture but still unable to generate revenue if it
lacks access to distribution channels or faces regulatory or customer adoption hurdles.
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reflect that, even with low actual revenue, they possess stronger credible threats, consistent with
the results linking capture to accumulated investment and time to exit. Panel (b) shows that among
high-revenue startups, value capture is uniformly higher for both groups and largely unresponsive
to acquirer count, suggesting that once a startup has credible outside options, bargaining power
equalizes and acquirer competition plays a lesser role.

Finally, Table 9 reports regressions of value creation on startup type, revenue, and acquisition-
market characteristics. Consistent with earlier results, science-based startups are associated with
significantly higher value creation across all specifications, even after controlling for revenue and
market structure. Revenue is itself a strong predictor of value creation, as exposed in the conceptual
framework’s view that commercial traction reduces market risk and unlocks value. Importantly,
revenue does not eliminate the science-based coefficient, which remains positive and significant
through column (5). In column (6), controlling for acquirer size—capturing the potential market
reach of the acquirer—renders the science coefficient insignificant, while revenue remains highly
significant. This pattern is consistent with the model’s prediction that commercial outcomes,
rather than scientific novelty per se, explain value creation: specifically, (i) the startup’s ability to
scale independently (proxied by revenue) and (ii) the size of potential acquirers (proxying market
reach). In the fully specified model (column 6), all interaction terms are insignificant, and the
coefficients shrink markedly relative to earlier specifications, suggesting that once these commercial
channels are accounted for, the residual effect of being science-based is negligible.
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Table 9: Value creation: Role of revenue and acquisition market structure. This table examines
how value creation varies across startups, focusing on science-based ventures, commercialization
outcomes, and acquirer characteristics. Science-based startups generate higher value across most
specifications, but this effect becomes insignificant once acquirer size is included (column 6). Revenue
is a strong and consistent predictor of value creation, and acquirer size further explains variation,
suggesting that commercial traction and acquirer market reach, rather than scientific novelty alone,
drive value creation.

Value Creation
(1) (2) (3) (4) (5) (6)

Revenue (decile) 0.301∗∗∗ 0.308∗∗∗ 0.327∗∗∗ 0.315∗∗∗ 0.324∗∗∗ 0.180∗∗∗

(0.023) (0.023) (0.031) (0.022) (0.027) (0.008)
Science-based Startup 0.659∗∗∗ 1.066∗∗∗ 0.558∗∗∗ 1.641∗∗∗ 0.340

(0.084) (0.255) (0.062) (0.348) (0.219)
Science × Revenue -0.081∗∗ -0.051∗ -0.010

(0.035) (0.030) (0.015)
Potential acquirers (decile) 0.043∗∗∗ 0.077∗∗∗ 0.023∗∗∗

(0.005) (0.006) (0.008)
Science × Potential acquirers -0.170∗∗∗ 0.005

(0.036) (0.022)
Acquirer size (log) 0.678∗∗∗

(0.005)
Constant 17.439∗∗∗ 17.273∗∗∗ 17.164∗∗∗ 17.048∗∗∗ 16.828∗∗∗ 2.780∗∗∗

(0.117) (0.132) (0.180) (0.115) (0.175) (0.059)
Industry × Year FE Yes Yes Yes Yes Yes Yes
Country FE Yes Yes Yes Yes Yes Yes
N 3,539 3,539 3,539 3,539 3,539 3,539
R2 0.288 0.295 0.297 0.300 0.310 0.798

Standard errors clustered at the Industry-Year and Subregion level
* p<.1, ** p<.05, *** p<.01
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6 Conclusion

Science-based innovations hold enormous promise for addressing critical, social challenges in sectors
such as advanced materials, agriculture, energy, and manufacturing, but entrepreneurial activity in
these areas remains limited. Much of the existing discussion has emphasized the challenges of value
creation for science-based ventures: high financing costs, long development timelines, and uncer-
tain or weak demand. This paper highlights a complementary and underexplored problem, value
capture, that can distort incentives even when scientific startups generate substantial economic and
social value. This problem is rooted in structural features of the current innovation ecosystem. In
many science-intensive sectors, commercialization follows a sequential process in which early-stage
innovators develop and validate the technology, but large incumbent firms—specialized in down-
stream manufacturing and distribution—ultimately bring it to market (Arora et al., 2018; Gans
and Stern, 2000; Marx et al., 2014; Teece, 1986). While this division of labor exploits the com-
parative advantages of each actor, it also creates a transfer stage where the first set of innovators
may hold weak bargaining positions, enabling incumbents to appropriate a disproportionate share
of the returns from innovation. As a result, the structure of these relationships can disincentivize
upstream innovation, shaping not only the overall rate of innovative activity but also its direction
toward domains with stronger prospects for value capture (Arora et al., 2024b; Grossman and Hart,
1986; Scotchmer, 2004).

To study this problem, I develop a novel empirical methodology that measures the joint surplus
an innovation creates and how that surplus is divided between the parties involved in its transfer.
Using this approach, I find that science-based startups acquired by publicly listed incumbents
systematically capture less of the total surplus generated at exit than comparable non-science
ventures, despite creating significantly more total value. This lower capture ultimately implies
that returns are suppressed not only because of a lack of potential, but because a greater share
of value is extracted by acquirers. The resulting penalty—non-negligible at roughly 24%—helps
explain why funding may be disproportionately allocated to non-science counterparts, alongside
more commonly cited explanations such as risk, capital intensity, and time to market.

These findings are consistent with further empirical evidence and a simple theoretical framework
in which two features of the exit environment—thin acquisition markets and weak outside options—
erode bargaining power for science-based startups. In many science-intensive sectors, only a small
number of large incumbents possess the downstream assets needed for commercialization, while
independent scaling is costly and rarely feasible. This combination leaves science-based startups
more dependent on a narrow acquirer set, enabling incumbents to extract a larger share of the value.
At the same time, differences in market structure also shape the total joint surplus (or value) created
by these startups. In non-science sectors, more fragmented acquirer markets tend to attract larger
marginal acquirers, raising total surplus, whereas in science-based sectors, expanding the acquirer
pool often brings in smaller, less capable firms, lowering the realized value from commercialization.
Concentrated markets thus have a dual effect: large incumbents can generate greater total surplus
from an innovation, but they also shift bargaining power away from startups, enabling acquirers to
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capture most of the gains from innovation.
Results are not without limitations. I outline four principal limitations below, while acknowl-

edging that additional challenges may persist beyond those discussed. First, the sample is selective
by design, restricted to startups acquired by publicly listed U.S. firms. This focus excludes other
forms of exits—such as acquisitions by private firms or IPOs—and may bias results if the dynamics
of value capture differ systematically across these pathways. Likewise, a substantial amount of
deals with missing transaction prices are excluded from the analysis. If acquirers are more likely
to disclose transaction values strategically—e.g., for deals perceived as more favorable—this could
introduce selection bias. Second, I estimate acquirer surplus using stock price reactions. I adopt
advanced techniques to isolate the causal component of these reactions and minimize noise, but this
approach remains sensitive to several well-known challenges: market expectations may be shaped
by incomplete or asymmetric information, investors may misprice deals due to behavioral biases,
and short-term reactions may not fully reflect long-run value creation. Third, the measurement
of the acquirer pool is also subject to error, as some potential acquirers may be unobserved or
misclassified.

Finally, a set of limitations stems from the auction theory and rent-sharing frameworks them-
selves. The model assumes that acquisitions reflect optimal matches between acquirers and startups—
that is, the acquirer who acquires the asset is the one that generates the highest surplus. In practice,
however, matching frictions, search costs, and information asymmetries can lead to suboptimal pair-
ings. Moreover, the framework abstracts from several important features of real-world dealmaking,
including sequential negotiations, renegotiation risk, winner’s curse dynamics, and affiliated bid-
ding behavior, all of which may distort observed outcomes relative to the theoretical benchmark.
As a result, the observed surplus may not reflect the true potential value under an efficient alloca-
tion, potentially affecting estimates of both total value creation and rent division. In addition, the
counterfactual—what value the startup could have captured under different exit conditions—is un-
observed and must be inferred indirectly through the lens of the model, which rests on assumptions
about matching and equilibrium behavior. These concerns do not invalidate the core empirical
patterns reported. However, they do call for cautious interpretation of the results, while pointing
to promising directions for future research.

The findings carry important implications for both policy and management. On the policy
side, they suggest that interventions should not focus solely on increasing value creation—through
instruments such as carbon taxes, emissions standards, or R&D subsidies—but also on improving
the conditions under which startups can retain a larger share of the value they generate. This re-
quires addressing bargaining asymmetries at the point of commercialization, particularly in settings
where incumbents hold disproportionate power. Of course, this assumes that incumbents remain
willing to acquire these startups even under reduced rent extraction—an outcome more likely when
alternative sources for the technology, such as internal development or third-party acquisition, are
unavailable, and the innovation is viewed as essential for long-term growth or competitive position-
ing.
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One potential channel for reducing these asymmetries is increasing competition in acquisition
markets, which could, in principle, strengthen startup bargaining power. This connects to broader
antitrust debates by highlighting how high levels of concentration in downstream markets can sup-
press upstream innovation (Antón et al., 2024; Federico et al., 2020; Segal and Whinston, 2007;
Shapiro, 2025). When startups are unable to appropriate a fair share of the value they generate,
certain technologies may never be developed or commercialized, distorting the direction of innova-
tion. Nonetheless, as the empirical results suggest, the current market structure—thin acquisition
markets for science-based ventures—is itself an equilibrium outcome of the innovation ecosystem.
Most likely, acquirer concentration arises endogenously from the nature of these technologies, which
are often highly specialized, capital-intensive, and dependent on complementary assets held by a
few large incumbents (Teece, 1986; Klepper, 1996; Sutton, 2007). As such, shifting the structure
of downstream markets is far from straightforward.

A more viable channel, thus, may lie in improving markets for technology and, especially, in fos-
tering independent commercialization pathways. Rather than reshaping who the acquirers are, an
alternative is to strengthen the startup’s position—either by increasing its ability to scale indepen-
dently or by expanding the institutional infrastructure that facilitates transfers outside traditional
acquisition channels. Achieving this requires complementary investments and institutional changes
that expand the set of capable commercializers, lower the cost for startups to build required down-
stream capabilities, or both. Policy tools might include targeted support for shared manufacturing
platforms, public–private commercialization infrastructure, and mechanisms that reduce the fixed
and transaction costs associated with scaling advanced technologies.

For startup managers and investors, the findings highlight the importance of actively managing
exit conditions by strengthening the startup’s bargaining position. One key strategy is to invest—
either directly or through signaling—in the potential for independent scaling. For example, raising
funds earmarked for pilot manufacturing or early commercialization efforts can serve as a credi-
ble threat that improves negotiating leverage. Second, startups should consider developing early
on select complementary capabilities in-house, particularly those that are difficult to outsource or
contract for, such as specialized manufacturing or integration with adjacent technologies. While
some of these investments may be duplicative or inefficient from a broader perspective, since in-
cumbents often already hold these downstream assets, they can be strategically necessary to signal
credible outside options and improve the terms of eventual acquisition. Third, distribution and
commercialization capabilities could be factored into geographic and operational decisions. Locat-
ing operations near key customer hubs—particularly within regional industrial clusters, such as
those in oil and gas or automotive—, can facilitate the path to market.

For managers at incumbent firms, the findings also carry important implications. While incum-
bents may benefit in the short run from capturing a larger share of the surplus in acquisitions—
particularly when bargaining with science-based startups lacking outside options—systematically
suppressing startup returns can undermine the long-term health of the innovation ecosystem. In
many science-intensive industries, incumbents increasingly rely on external innovation rather than
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internal R&D to access novel technologies Fleming et al. (2019). If upstream entrepreneurs and
investors anticipate weak returns due to structural rent-sharing disadvantages, this may discourage
entry into precisely the kinds of frontier domains that incumbents depend on for future growth. In
this sense, value capture strategies that prioritize short-term extraction can erode the very pipeline
of external innovation that sustains competitiveness in the long term.

To mitigate these risks, incumbents can play a more proactive role in shaping commercializa-
tion pathways by supporting startups through two complementary channels: reducing market risk
and expanding access to complementary capabilities. The former includes corporate venture in-
vestments, validation partnerships, or co-development agreements that help early-stage ventures
demonstrate feasibility and move closer to market readiness. The latter focuses on co-developing or
enabling access to assets such as pilot manufacturing facilities, prototyping labs, or technical infras-
tructure that science-based startups often lack. These complementary capabilities not only improve
startups’ bargaining power by strengthening their outside options but also generate spillovers for
the incumbent by spurring innovation within key technological domains.

A concrete example of this approach is IBM’s support for quantum startups. Through the
IBM Quantum Network, the company grants startups access to one of its core technological assets,
quantum computing infrastructure. The goal is not necessarily to acquire these startups, but to
enable them to explore applications and push the frontier of quantum technologies closer to market.
Crucially, by opening access to high-cost, high-complexity infrastructure that startups could not
feasibly build on their own, IBM lowers the barriers to upstream innovation in a domain where
downstream capabilities are essential. While IBM may not capture direct returns through acquisi-
tion, it stands to benefit indirectly, through knowledge spillovers, improved tools and protocols, and
a stronger external pipeline of advanced technologies. This model illustrates how granting access
to key complementary assets can stimulate upstream innovation in ways that ultimately reinforce
the incumbent’s long-term position, even without formal ownership or control over the startup.

Beyond these implications, the paper makes several contributions. First, it contributes to our
understanding of the structural barriers that limit the ability of science-based innovations to reach
the market through startups. While prior research has emphasized challenges related to demand un-
certainty (Dalla Fontana and Nanda, 2023; Van den Heuvel and Popp, 2023), capital intensity (Hall
and Lerner, 2010), technological risk and experimentation (Ewens et al., 2018; Kerr et al., 2014;
Nanda and Rhodes-Kropf, 2017; Howell, 2017), and long development timelines (Narain, 2025),
this paper shifts attention to a complementary friction: weak value capture. Specifically, it high-
lights how the division of surplus in sequential innovation systems systematically suppresses startup
returns (Gans and Stern, 2000; Scotchmer, 1996; Arora et al., 2024a), even when science-based star-
tups create large total value. This distortion arises from structural features of the commercialization
environment—most notably, the absence of critical complementary capabilities and the concentra-
tion of these assets in a small set of incumbent firms (Teece, 1986; Helfat and Lieberman, 2002;
Kapoor and Furr, 2015). Furthermore, while I focus on startups because they offer a measurable
and discrete locus of transfer, they represent only one channel for bringing science to market (Cohen
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et al., 2002); similar frictions may affect earlier decisions in the translation process—from scientists
choosing whether to disclose and pursue further an innovation (Masclans et al., 2025), to technology
transfer offices and other intermediaries deciding which ideas and innovations to prioritize (Cohen
et al., 2025).

The paper also contributes to the literature on commercialization modes and entrepreneurial
strategy (e.g., Ceccagnoli et al., 2014; Gans et al., 2002; Marx et al., 2014), underscoring that
independent scaling pathways matter not only as alternative routes to market, but also as bargaining
instruments that shape outcomes in acquisition negotiations. Likewise, it informs the literature on
M&A and corporate strategy by shifting attention from deal- and firm-specific characteristics to
the structural conditions under which acquisitions occur. By focusing on the role of the market
structure of potential acquirers, it shows how the broader architecture of acquisition markets can
systematically influence not only the total value created but also how that value is distributed
between acquirer and target. This complements existing work on M&A drivers and performance
across organizational and industry contexts (e.g., Barney, 1988; Capron and Shen, 2007; Feldman
et al., 2019; Kaul and Wu, 2016; Testoni, 2024; Villalonga and McGahan, 2005). Finally, the
paper further contributes to the literature on innovation and downstream market structure by
documenting how the number and size of potential acquirers vary systematically with startup type,
and how this structure influences value creation and capture. These findings provide new empirical
evidence consistent with theories of market concentration and appropriability in R&D intensive
sectors (Cohen, 2010; Klepper, 1996; Sutton, 2007).

Methodologically, the paper offers three innovations. First, it develops an approach to distin-
guish value creation from value capture in startup acquisitions, enabling the empirical study of
rent-sharing under conditions of sequential innovation. This framework allows for both the analysis
of underexplored questions, such as who captures value in science-based domains, and the rein-
terpretation of classical innovation frictions through a surplus division lens. Second, it introduces
a novel classification method for identifying science-based startups using large language models
applied to textual business descriptions, improving on traditional proxies such as patent and pub-
lication data. Third, the paper adapts the parametric approach of Kogan et al. (2017) to isolate
the market signal in acquisitions by public firms, allowing for clean estimation of joint surplus and
enabling general application to other studies of acquisition outcomes using stock market data.
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A A Simple Model: Startup Market Thickness, Outside Options,

Value Creation, and Value Capture

The model considers a stylized setting in which a startup negotiates with a set of potential acquirers,

with two main assumptions that, as I show in the results section, are supported by the data. The first

assumption is that the bidder market structure differs systematically by type of innovation (science-

based vs. non-science-based) in terms of the number of potential acquirers, their average size, and

the relationship between these two dimensions.

1. Science-based startups are associated with a narrower pool of potential acquirers, typically

composed of large incumbents. This is because science-based startups often require specialized

assets to scale manufacturing and distribution and these are not commonly available. However,

as the number of potential bidders increases, the average size and capability of these acquirers

tends to decline. The intuition is that only a few large incumbents possess the specialized

complementary assets required to scale commercialization. If these are not interested in ac-

quiring the technology, the remaining potential acquirers are smaller, more fragmented, and

less capable (see case examples in Appendix B).

2. Non-science-based startups, in contrast, attract a broader and more heterogeneous set of po-

tential acquirers. As the number of bidders increases, the likelihood of encountering a large

acquirer rises. The intuition is that the broader applicability of these technologies across sec-

tors expands the pool of potential acquirers, and by order statistics, a larger pool increases the

likelihood of attracting a high-valuation or large acquirer (see case examples in Appendix B).

The second assumption is that science-based startups have weak outside options, which translate

into a lower reservation value—that is, a lower minimum payoff they can secure outside of acquisition.

This reflects the challenges (e.g., high costs and time; access to contract manufacturing) involved

in accessing or developing the necessary complementary capabilities to independently scale science-

based innovations. In contrast, non-science-based startups are more likely to scale independently,

due to lower capital intensity, fewer regulatory constraints, and more accessible commercialization

pathways. As a result, their outside option is stronger: if acquisition terms are unattractive, they

can credibly pursue growth on their own.

Note that I treat the downstream market structure and availability of complementary capabilities

via contract manufacturing and distribution as exogenous, but they may well not be. In fact, these

may be jointly determined by other factors, such as the nature of the innovation (e.g., potential
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number of market applications at discovery as well as the market demand for each of these applications

(Bresnahan and Gambardella, 1998)). While very interesting, in this paper I abstract from these

considerations, which I leave for future research.

Startup valuations are modeled as acquirer-specific, reflecting differences in the complementarities

between the startup’s technology and each incumbent’s existing capabilities. The intuition is that

each potential acquirer places a different value on the same startup, depending on idiosyncratic

factors. This is a relevant assumption, as it entails that demand for the startup’s technologies

is not homogeneous and, as a result, capture outcomes will depend not only on the number of

acquirers but also on the valuations each bidder places for a given startup. Finally, given that many

acquisitions occur through a process of offers, negotiations, and competing bids, auction theory

provides a parsimonious and tractable framework for formal analysis. In particular, I use a second-

price sealed-bid auction model. In this setting, the incumbent with the highest valuation acquires

the startup and pays the second-highest bid, subject to the startup’s reservation value.

A.1 Model

A finite number of incumbent firms, indexed by i ∈ {1, . . . , N}, participate in the auction. The

startup offered for sale is characterized by its type θ ∈ {S, NS}, indicating whether the technology is

specialized (science) or non-specialized (non-science). The type determines both the market structure

and the distribution of bidder valuations. The goal is to characterize equilibrium outcomes—price,

joint surplus, and capture—and how they vary with N and θ.57

Each bidder is risk-neutral and privately informed about its valuation for the startup. The

valuation, denoted vi, reflects the degree of complementarity between the startup’s technology and

the bidder’s existing assets. Importantly, vi also represents the total joint surplus (Vi) introduced

in the conceptual and empirical framework if the startup is acquired and integrated by bidder i.58

Formally, I assume

vi ∼ Uniform[0, v̄θ(N)], (9)
57An equilibrium here is a strategy profile {bi(vi)}N

i=1, one for each bidder, such that no bidder has an incentive
to deviate, given their beliefs about the distribution of other bidders’ valuations and the strategies they follow.
I study equilibrium behavior in a second-price sealed-bid auction under the standard independent private values
(IPV) framework. Each bidder i selects a bid bi(vi) to maximize expected utility given their own valuation vi and
beliefs about others’ valuations. It is well known that truthful bidding bi(vi) = vi constitutes a weakly dominant
strategy (Vickrey, 1961; Krishna, 2009). Thus, the strategy profile in which all bidders report their true valuations
is a Bayesian Nash Equilibrium. Given this equilibrium, the goal is to characterize the resulting allocation, price,
and surplus division. I referred to these as equilibrium outcomes, as they arise endogenously from the equilibrium
bidding behavior, and I analyze how these outcomes vary with the number of bidders and the structure of valuation
distributions across technology types.

58Put simply, bidder i values the startup at vi and will pay a price p, where p < vi. Assuming, for simplicity, zero
costs, the startup’s surplus is p, the acquirer’s surplus is vi − p, and the joint surplus is p + (vi − p) = vi.
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with valuations drawn independently across bidders. The upper bound v̄θ(N) depends on both the

type θ and the number of participants N . That is, bidder valuations are assumed to be drawn from

a uniform distribution with an upper bound that is itself a function of θ and N .

As exposed above, supported by the data, and illustrated in the case examples in Appendix B, I

also assume the following in regard to market structure, defined by the number and size of potential

bidders:
dv̄S(N)

dN
< 0 and dv̄NS(N)

dN
> 0 (10)

These assumptions capture structural asymmetries in market organization. For specialized tech-

nologies (θ = S), value is concentrated among a few large acquirers. If these fail to engage in the

acquisition, additional bidders are increasingly marginal, average complementarity falls and so does

the startup’s joint surplus (vi). For non-specialized technologies (θ = NS), applicability is broad and

diffuse, and more bidders expand the probability of high-value matches (simply by reason of order

statistics).

A.1.1 Bidders’ Optimization Problem

Each bidder i submits a bid bi ∈ R+. Let vi denote bidder i’s private valuation. The startup sets a

reservation price r proportional to the highest valuation:

r = α · v(1), with α ∈ (0, 1),

where v(1) = max{v1, . . . , vN }. This represents the startup’s outside option (independent scaling)

expressed as a fraction of what the top bidder would generate. Let b(1) = max{b1, . . . , bN } and b(2)

denote the second-highest bid. The project is sold if b(1) ≥ r, and the winning bidder pays

p = max{r, b(2)}

Bidder i’s utility function is:

ui(bi; vi) =


vi − max{r, b(2)} if bi > maxj ̸=i bj

0 otherwise.

75



The optimization problem for bidder i is:

max
bi∈R+

E [ui(bi; vi)] (11)

A.1.2 Equilibrium Bidding

Under standard assumptions of independent private values (IPV) and risk neutrality, it is a classical

result (Krishna, 2009; Vickrey, 1961) that truthful bidding is a weakly dominant strategy in second-

price auctions. Therefore, in equilibrium,

b∗
i (vi) = vi for all i

The winner is the bidder with the highest valuation, and the price paid is max{v(2), r}, where

v(2) is the second-highest valuation. Given α < 1, the startup is always sold, and the surplus is

divided between the startup and the winning bidder. While this result holds under the standard

independent private values (IPV) assumption, many relevant settings—particularly those involving

scientific or uncertain technologies—depart from this framework. In such cases, bidders may hold

affiliated signals59 or face common value uncertainty, giving rise to bargaining dynamics such as

winner’s curse behavior or more conservative bidding.60

A.1.3 Equilibrium Outcomes

Let v(1) and v(2) denote the first and second order statistics among N independent and identically

distributed draws from the uniform distribution on [0, v̄θ(N)]. It is a standard result in the theory

of order statistics that if X1, . . . , XN are i.i.d. draws from Uniform[0, 1], then the k-th order statistic

X(k) follows a Beta distribution:

X(k) ∼ Beta(k, N + 1 − k),
59The assumptions could be relaxed to account for affiliated bidding. The current manuscript abstracts from this

possibility. In auction theory, affiliation refers to a situation where bidders’ signals about the value of the asset for
sale are not independent but positively correlated: a high signal observed by one bidder makes it more likely that
other bidders also have high signals.

60The winner’s curse is the risk that the winning bidder overpays in auctions with uncertain or correlated values,
because winning itself is a negative signal. In thin markets—especially for science-based technologies—this risk can
distort outcomes in two ways. If bidders are naive, they may overpay, inflating startup surplus. But if bidders are
rational and anticipate the curse, they respond by bidding more conservatively, reducing prices. Either way, the
result is a distortion: inefficient allocation or weaker value capture.
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with mean E[X(k)] = k
N+1 (see David and Nagaraja, 2004). Applying this result to the scaled

distribution Uniform[0, v̄θ(N)], I obtain:

v(1) ∼ v̄θ(N) · Beta(N, 1), v(2) ∼ v̄θ(N) · Beta(N − 1, 2)

It follows that the expected highest and second-highest valuations are:

E[v(1)] = N

N + 1 · v̄θ(N), E[v(2)] = N − 1
N + 1 · v̄θ(N) (12)

The price paid by the winning bidder is the maximum between the second-highest bid and the

reservation price, which is set as a fraction α ∈ (0, 1) of the top valuation:

p = max{v(2), α · v(1)}

The share of total value captured by the startup is then:

s = p

v(1)

Using the expressions in (12), I can characterize expected outcomes. The expected price is:

E[p] = v̄θ(N) · max
{

α · N

N + 1 ,
N − 1
N + 1

}
,

and the expected share of value captured by the startup is:

E[s] = max
{

α,
N − 1

N

}

A.1.4 Comparative Statics and Interpretation

These expressions yield the following predictions. For specialized technologies (θ = S), the function

v̄S(N) is decreasing in N , and thus both E[v(1)] and E[p] may decline with the number of bidders.

This captures the empirical regularity that value creation falls when a few large acquirers abstain

and the market fragments. The startup’s share E[s] increases in N , as competition tightens the gap

between v(1) and v(2), but this share is applied to a shrinking total.

For non-specialized technologies (θ = NS), the opposite logic applies. Here, v̄NS(N) increases

in N , and thus both E[v(1)] and E[p] increase. The startup’s share also rises in N , but the effect is
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flatter, as dispersion in valuations is smaller. The market structure reflects a horizontal application

of the technology: adding bidders from new sectors and geographies improves the chance of finding

a high match.

A.1.5 Simulations

Following the theoretical model, I simulate acquisition outcomes. For each project, the number

of potential bidders N is drawn from a type-dependent distribution, reflecting the differing mar-

ket structures of specialized versus non-specialized technologies. Conditional on technology type θ,

bidders are symmetric. Each bidder’s valuation vi is additively separable in Li, where Li reflects

structural complementarities between the bidder and the startup’s technology—drawn from a distri-

bution whose mean depends on θ and N . To introduce the idiosincracti component, thhat is, that

demand is not homgenous and each bidder may place a unique value to a technology based on ex-ante

complmentaryasset and capabilities, this shock is modeled asεi is an idiosyncratic shock drawn i.i.d.

from a normal distribution. Specifically, I define:

Following the theoretical model, I simulate acquisition outcomes. For each project, the number

of potential bidders N is drawn from a type-dependent distribution, capturing differences in market

structure between specialized and non-specialized technologies. Conditional on technology type θ,

bidders are symmetric. Each bidder’s valuation vi is additively separable in Li, where Li represents

structural complementarities between the bidder and the startup’s technology. Li is drawn from a

distribution whose mean depends on θ and N . To capture heterogeneity in bidder-specific valuations

of the technology, arising from differences in ex-ante complementary assets and capabilities, an

idiosyncratic component εi is added. This shock εi is drawn i.i.d. from a normal distribution.

Formally:

vi = Li + εi, εi ∼ N (µε, σ2
ε), i.i.d. across i

Parameters are calibrated to match empirical moments of the data presented in the paper. The

startup conducts the second-price auction with the endogenous reservation price r.

The valuation vi should be interpreted as the bidder’s private value from acquiring the project.

While Li reflects structural complementarities with the project, the shock εi captures firm-specific

conditions, ranging from specific capabilities to other idiosyncratic aspects. For example, a mid-size

acquirer that recently raised capital may report an elevated εi relative to its size, thereby increasing

its bid despite a moderate Li.

The reservation price r represents the startup’s outside option to continue development or com-
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mercialization without being acquired, as discussed. Rather than being fixed across deals, I allow

r to depend on the project and context. Specifically, I define r = α · v(1) where α ∈ (0, 1) is a

type-dependent random variable capturing the strength of the startup’s fallback. This reduced-form

specification reflects the idea that the value of self-commercialization is positively correlated with

the potential value to the top bidder, but at a discount. For example, a startup with a partially

validated oncology platform may see 20% of the top bidder’s value in a standalone scenario, while a

mature SaaS product may capture 70%.

Given this structure, and following the results of the model introduced above, the transaction

occurs if and only if:

v(1),N ≥ r = α · v(1),N ⇐⇒ α < 1,

which is always true under the assumed support for α. That is, a sale always occurs. However,

the binding constraint is whether the second-highest valuation v(2),N exceeds the reservation. If

v(2),N ≥ r, the price is set by bidding competitive pressure; if v(2),N < r, the startup sells at the

fallback (outside option) price.

This payoff structure implies that the startup benefits from competition when v(2),N is high, and

falls back on its reservation value when competition is weak. The distributional assumptions on

valuations—driven by the relationship between θ, N , and bidder sizes Li—imply sharp comparative

statics for both the price and the surplus share as functions of N and project type.

For example, under a specialized technology (θ = S), one expects that:

• The distribution of N is concentrated on low values.

• Bidder sizes Li are high for small N , but decrease in expectation with N .

• Consequently, v(1),N may be decreasing in N , while the share s = v(2),N /v(1),N increases.

• The share s increases in N , reflecting greater competitive pressure, but the total surplus may

decrease.

In contrast, under a non-specialized technology (θ = NS), larger N correlates with higher expected

Li, so both v(1),N and v(2),N increase with N , and the startup’s share varies less steeply. Figure A.1

illustrates the model’s predictions based on the outcomes of a simulation with 6,000 transactions.
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Figure A.1: The figure plots results from simulations based on model.
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B Case Examples: Fragmented Adoption of Specialized Technolo-

gies

Founded in 2001 as a spin-off from the Massachusetts Institute of Technology, A123 Systems aimed to

commercialize a lithium-iron-phosphate (LFP) battery chemistry that offered superior power density

and thermal stability relative to conventional lithium-ion cells. Early venture financing from Sequoia

Capital and GE Energy, along with a $249 million grant from the U.S. Department of Energy, the

company inaugurated a 291,000 ft2 manufacturing facility in Livonia, Michigan, in 2010, at that time

the largest lithium-ion plant in North America.61 A123’s growth strategy hinged on securing at least

one of the three dominant U.S. automakers as an anchor customer and potential acquirer.

General Motors tested the cells for the first-generation Chevrolet Volt, but ultimately awarded

the contract to LG Chem instead, citing cost and scale considerations.62 Chrysler announced an

alliance with A123 in 2009, yet the program was shelved during Chrysler’s own bankruptcy and

restructuring.63 Because the U.S. auto industry is highly concentrated, A123 faced a limited pool

of potential acquirers. Having failed to secure any of the dominant incumbents as acquirers or

large-scale customers, the company struggled to scale commercialization independently. As financial

constraints mounted, A123 was acquired in early 2013 by Wanxiang Group, a mid-sized Chinese firm

considerably smaller than the U.S. automakers the company had originally targeted.64 Post-sale, the

technology diffused mainly through niche or mid-tier applications: Fisker Automotive’s low-volume

Karma plug-in65 and BAE Systems’ HybriDrive propulsion kits for city buses.66 These acquirers

purchase in the thousands rather than the millions, limiting aggregate demand and depressing the

economic surplus A123’s IP could generate—an outcome consistent with the model’s prediction that,

in concentrated markets, rejection by a small set of large incumbents channels specialized technology

toward fragmented, lower-value niches.

A similar example is Soraa. Founded in 2008 by University of California, Santa Barbara re-

searchers Shuji Nakamura (Nobel Prize receipient), Steven DenBaars, and James Speck, Soraa sought

to commercialize a proprietary gallium-nitride-on-gallium-nitride (GaN-on-GaN) light emitting diode

architecture that delivers a violet pump and full-spectrum emission with unusually high color ren-
61Wired, “A123 Systems opens huge battery factory,” 14 September 2010; Reuters, “Obama heralds opening of

A123’s Michigan plant,” 13 September 2010.
62Reuters, “Battery cells for the Volt will be supplied by Korea’s LG Chem,” July 13 2009.
63Green Car Congress, “Chrysler LLC forms strategic alliance with A123Systems,” April 2009; The Truth About

Cars, “Fiat/Chrysler EV program loses battery supplier A123,” August 2010.
64Reuters, “Battery maker A123 Systems files for bankruptcy,” Oct 16 2012; Bloomberg, “Wanxiang wins CFIUS

approval to buy bankrupt battery maker A123,” Jan 29 2013.
65Car and Driver, “Fisker Karma production halted by A123 Systems bankruptcy,” Oct 2012.
66Green Car Congress, “BAE Systems to offer A123Systems Li-ion unit in HybriDrive,” May 2007.
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dering.67 Early venture financing from Khosla Ventures, New Enterprise Associates, and NGEN

Partners underwrote process development and pilot production at the firm’s facility in Fremont,

California.68 In November 2013, the company announced plans for a $400 million, state-subsidized

wafer-fabrication plant in Buffalo, New York, expected to create nearly 400 jobs and to begin op-

erations in 2015.69 Between 2014 and 2015, Soraa withdrew from the Buffalo project, which was

subsequently reassigned to SolarCity under New York’s “Buffalo Billion” initiative, eliminating the

anticipated scale-up path for Soraa.70

The LED lamp market has long exhibited oligopolistic structure, with Signify (Philips), Osram,

and GE/Savant controlling a major share of global sales.71 Soraa entered this arena with a differ-

entiated, high-color-rendering GaN-on-GaN architecture that delivered superior spectral quality but

at a substantially higher costs and with incompatibilities with existing fixtures, transformers, and

dimmers—a significant hurdle to adoption. 72 To address this incompatibility, the company launched

the “Works with Soraa” program, aiming to validate and ensure compatibility with various lighting

components. Despite these efforts, the integration into existing systems was not seamless. Later,

Soraa’s started focusing on niche markets with high-end applications for museums, galleries, and

premium hospitality venues.

This niche focus, combined with the higher costs associated with their advanced LED technology,

may have limited their appeal to major OEMs prioritizing cost-effectiveness and broad compatibility,

potentially deterring large OEMs seeking plug-and-play solutions. Persisting capacity constraints and

cash-constrained, together with the absence of adoption by dominant lamp OEMs, culminated in the

March 2020 sale of Soraa’s assets and intellectual property to Ecosense Lighting.73

67Optics.org, “Soraa to build LED factory in Buffalo,” 22 November 2013.
68NGEN Partners, “Portfolio: Soraa Corp.” (accessed May 2025).
69Optics.org, ibid., lines L3–L10.
70Investigative Post, “Tesla’s solar factory in Buffalo fizzles,” 11 January 2023, lines 13–14.
71Inc. Magazine, “The lighting industry: Philips, Sylvania and GE constituted a long-standing oligopoly,” Sept

2019.
72LEDinside, “Soraa makes new record on GaN-on-GaN LEDs,” Feb 18 2013.
73Ecosense press release, “Ecosense acquires assets from Soraa,” 24 March 2020.
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C Estimating Acquisition Value from Market Returns: A Method-

ology to Isolate the Signal from the Noise

A central challenge in estimating the economic value of acquisitions lies in the noisy nature of

market responses. Observed stock price reactions around acquisition announcements reflect both the

underlying value of the transaction and idiosyncratic movements in the market. To extract more

accurate estimates of acquisition value, I develop a signal extraction approach that builds on the

methodology developed by Kogan et al. (2017). This section provides the intuition and details of

this methodology.

Kogan et al. (2017)’s methodology, developed to estimate patent values based on stock market

reactions upon granting announcement, is based on the assumption that patent grant announcements

cannot destroy value. Accordingly, they model stock market responses using a normal distribution

truncated at zero, a choice that also offers convenient tractable properties. In this paper, I mod-

ify their methodology by allowing the market signal to be negative through the introduction of a

truncated distribution that bounds the downside of market reactions by transaction prices, which,

in turn, assumes the market observes. In this case, I still rely on a relevant assumption, although

more relaxed: that transactions cannot destroy value in global. Specifically, any value destruction

on the incumbent’s side is bounded by the price paid to the startup (put simply, if an acquirer pays

$100 million for a target, the most it can lose is $100 million—hence, the market signal is bounded

below at $100 million).74 All derivations that follow from this assumption, including the adjusted

likelihood function, identification strategy, and moment structure, are novel. The remainder of the

setup and derivation follows the framework developed by Kogan et al. (2017), which I reproduce here

for clarity and completeness.

C.1 Modeling the Observed Return

Let ri denote the observed abnormal stock return for acquiring firm i following the announcement of

an acquisition. I model this return as the sum of a latent value component vi and a noise term εi:

ri = vi + εi, (Observed return) (13)

where vi represents the component of the return attributable to the fundamental value of the trans-

action, such as the knowledge or technology being acquired, while εi captures random market fluctu-
74Note that the transaction price is observed without noise.
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ations that obscure this signal, i.e., the market noise or measurement error I want to get rid of. The

econometric problem is thus to recover vi, the underlying signal I care about, given that I observe ri

with noise εi that contaminates the measurement.

To do so, I start by imposing some distributional assumptions on both the signal and noise terms.

First, I assume the signal follows a normal distribution with mean zero and variance σ2
x, but with a

firm-specific truncation threshold ki, such that:

vi ∼ N (0, σ2
x) truncated at vi > ki (True signal) (14)

Assuming a mean of zero for the latent value distribution can be interpreted as reflecting a neutral

prior: on average, the ex ante expectation is that an acquisition creates no net value. This is a

conservative assumption, consistent with a setting where realized outcomes are highly uncertain.

Such a prior does not rule out the possibility of substantial upside in particular cases, but it captures

the idea that, absent further information, the baseline expectation is zero net surplus on the acquirer

side.

The truncation captures the assumption that losses from a transaction are bounded below by the

price paid. That is, even if an acquisition turns out to destroy value for the acquirer, the most that

can be lost is the amount invested, i.e., negative realized surplus cannot exceed the purchase price.75

The noise term is assumed to be independent of the signal and normally distributed. That is,

the value acquirer gets from acquisition is orthogonal to the market or other events:

εi ∼ N (0, σ2
ε), εi ⊥ vi (Noise) (15)

Under these assumptions, the total variance in the observed return ri can be decomposed into the

variance of the signal σ2
x and the variance of the noise σ2

ε . The total variance of ri is then Var(ri) =

σ2
x+σ2

ε . The key parameter summarizing their relative magnitudes is the signal-to-noise ratio, defined

as the proportion of the total variance that comes from the signal:

δ = σ2
x

σ2
x + σ2

ε

(Signal-to-noise ratio) (16)

With these, given the observed return ri, the objective is to estimate the underlying latent value vi.
75One could argue that some acquisitions may destroy value beyond this amount, for example by locking the firm

into a misguided strategic direction or crowding out better alternatives. However, for modeling purposes, I impose
this bound to maintain a well-defined support for the value distribution and to reflect the idea that the immediate
economic loss is capped by the acquirer’s upfront investment.
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The optimal estimator under squared loss is the conditional expectation E[vi | ri], which I derive

from properties of the truncated normal distribution. Since vi and εi are assumed to be independent,

their joint distribution implies that the posterior distribution of vi | ri is a normal distribution with

mean µ∗ = δ ri and variance σ∗2 = δ σ2
ε , truncated at vi > ki. The conditional expectation is given

by:

E[vi | ri] = δ ri +
√

δ σε ·
ϕ
(

ki−δ ri√
δ σε

)
1 − Φ

(
ki−δ ri√

δ σε

) , (Expected signal) (17)

where ϕ(·) and Φ(·) denote the standard normal probability density and cumulative distribution

functions, respectively. I present the full mathematical derivation of this expression at the end of

this section, while now I first focus on providing intuition.

The signal-to-noise ratio δ is a key concept here because it tells us how much of what we observe

in ri is truly the signal vi (the acquisiton value) versus random noise εi (market fluctuations). If δ is

close to 1, it means most of the variation in ri is due to the signal vi and the noise is relatively low.

In this case, the shrinkage towards the prior (recall I imposed a prior of 0) is small and ri is mostly

signal. Conversely, if δ is close to 0, it means most of the variation in ri comes from noise and that

the signal is weak relative to the noise. With low δ the shrinkage is strong and the observed return

is heavily influenced by noise, so the estimate of vi is pulled toward zero, i.e., toward the prior mean.

C.2 Signal-to-noise ratio intuition

To start simply, assume no truncation, which simplifies the conditional expectation considerably.

I treat vi as coming from an untruncated normal distribution. Let the rest of the assumptions

introduced above hold. In that case, vi ∼ N(0, σ2
x) and there is no lower bound ki to consider. The

derivation of E[vi | ri] then becomes a standard linear regression problem in the context of a joint

normal distribution:

E[vi | ri] = σ2
x

σ2
x + σ2

ε

ri = δ ri

Notice that there is no additional term involving the normal PDF (ϕ) or CDF (Φ), since these

components arise solely because of the truncation correction. Without truncation, the conditional

expectation is linear in ri and does not include that second component. The second component—the

adjustment term—is only necessary when accounting for the fact that vi is restricted (truncated) to

be above a certain threshold. Without that constraint, the distribution is symmetric and unbounded,
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and the conditional expectation reduces to the simple linear form.

More formally, in the jointly normal case, the expression holds as follows. First, when two random

variables vi and ri are jointly normally distributed, a key property is that the conditional expectation

E[vi | ri] is a linear function of ri. That is, there exist constants a and b such that E[vi | ri] = α+β ri.

If, for simplicity, I assume that both vi and ri have mean zero (i.e., E[vi] = 0 and E[ri] = 0), then

the best linear predictor simplifies. Under these conditions, the intercept a is zero, and we have

E[vi | ri] = β ri.

In this last expression, the slope β is determined by minimizing the mean squared error (MSE) of

predicting vi using a linear function of ri. This leads to the classical result β = Cov(vi,ri)
Var(ri) , a standard

outcome from linear regression theory. Thus, given the zero mean assumptions, we can write:

E[vi | ri] = βri = Cov(vi, ri)
Var(ri)

ri

Since ri = vi +εi and vi and εi are independent: Cov(vi, ri) = Cov(vi, vi +εi) = Var(vi)+Cov(vi, εi).

Because Cov(vi, εi) = 0, Cov(vi, ri) = σ2
x. And, recall that Var(ri) = σ2

x + σ2
ε . Then,

E[vi | ri] = Cov(vi, ri)
Var(ri)

ri = σ2
x

σ2
x + σ2

ε

ri. Let δ = σ2
x

σ2
x + σ2

ε

→ E[vi | ri] = δ ri

Intuition:

• Covariance (Cov(vi, ri)): Measures how much vi and ri vary together. If ri contains a lot of

signal from vi, this covariance will be high.

• Variance (Var(ri)): Measures the total variability in ri, which includes both the signal vi and

the noise εi.

The ratioCov(vi,ri)
Var(ri) tells us what proportion of the variability in ri is due to vi, and is the signal-

to-noise ratio, denoted by δ.

C.2.1 Negative truncation

I now turn to the second term, the truncation adjustment in the conditional expectation E[vi | ri].

Recall that without truncation, we have E[vi | ri] = δ ri, but tat the full derivation with truncation

is

E[vi | ri] = δ ri +
√

δ σε ·
ϕ
(

ki−δ ri√
δ σε

)
1 − Φ

(
ki−δ ri√

δ σε

)
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The full derivation follows the assumption that the acquisition signal vi has lower bound at ki

(vi > ki), i.e., I assume the true vi is drawn from a truncated normal distribution and that, in turn,

the truncation point is below 0 (ki < 0). In a truncated normal, the expectation is no longer just

the untruncated mean, it must account for the fact that the left tail (below ki) is cut off.

For a random variable Z that follows a normal distribution N(µ, σ2) truncated from below at a,

the expected value is given by: E[Z | Z > a] = µ + σ
ϕ( a−µ

σ )
1−Φ( a−µ

σ ) , where ϕ(·) is the standard normal

PDF and Φ(·) is the standard normal CDF. The ratio ϕ( a−µ
σ )

1−Φ( a−µ
σ ) is often called the inverse Mills ratio.

Thus, in my setting, after combining the signal and noise components and conditioning on ri, the

conditional distribution of vi becomes a truncated normal with:

• Conditional Mean (if untruncated): µ∗ = δ ri

• Conditional Standard Deviation: σ∗ =
√

δ σε

• Truncation Point: ki

The intuition behind this second term is as follows:

• Adjustment for missing mass: The term σ∗
ϕ

(
ki−µ∗

σ∗

)
1−Φ

(
ki−µ∗

σ∗
) corrects for the fact that the distribution

of vi is cut off below ki. Without this adjustment, one would underestimate the true average

value of vi due to ignoring all the values below ki.

• Inverse Mills Ratio: The fraction ϕ(z)
1−Φ(z) (with z = ki−µ∗

σ∗ ) increases as the truncation point

ki gets closer to µ∗. In other words, if the truncation is severe (i.e., ki is not far below the

untruncated mean µ∗), then a significant portion of the distribution is being cut off, and the

adjustment is larger (this is the case for example in the original Kogan et al. (2017) method-

ology).

• Scaling by σ∗: The term is scaled by the standard deviation σ∗ of the conditional distribution,

which adjusts the magnitude of the correction to match the dispersion of the distribution.

Notice that δ and
√

δ appear in both the main term and the adjustment. This means that the

quality of the signal relative to the noise also affects how much correction is needed for the truncation:

• If the signal is strong (δ high): The adjustment is smaller because ri is already a good indicator

of vi.

• If the signal is weak (δ low): The adjustment is larger, reflecting greater uncertainty about the

true vi.
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In sum, the final expression consists of two components: the first term, δ ri, represents a standard

linear shrinkage estimator that adjusts the observed return toward zero depending on the relative

precision of the signal. When the signal-to-noise ratio δ is high, the observed return is a reliable proxy

for value, and little adjustment is needed. When δ is low, the return is more heavily discounted.

The second term is a non-linear adjustment that arises from the truncation of the signal distribution.

This term corrects for the fact that we only consider values of vi exceeding a threshold ki. Intuitively,

when the truncation point is close to the conditional mean µ∗, the adjustment is large and positive,

reflecting the asymmetric censoring of the lower tail. In contrast, when the truncation point lies far

below µ∗, the adjustment becomes negligible.

C.3 Full derivation

Assumptions

1. Distribution of Acquirer Surplus:

Vi ∼ N(0, σ2
x,ft), ki < 0

2. Distribution of Measurement Errors:

εi ∼ N(0, σ2
ε,ft)

3. Constant Proportions (constant signal-to-noise ration):

σ2
x,ft

σ2
ε,ft

= constant

4. Independence:

Vi ⊥ εi

Objective

I want to calculate:

E[Vi | ri]

where ri = Vi + εi.
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Derivation

1. Joint Density Function

Since Vi and εi are independent, their joint density is:

f(Vi, εi) = f(Vi)f(εi)

Given:

f(Vi) = 1√
2πσx,ft

exp
(

− V 2
i

2σ2
x,ft

)
, Vi > ki,

and

f(εi) = 1√
2πσε,ft

exp
(

− ε2
i

2σ2
ε,ft

)

Using the transformation εi = ri − Vi, we have:

f(Vi, ri) = 1
2πσx,ftσε,ft

exp
(

− V 2
i

2σ2
x,ft

− (ri − Vi)2

2σ2
ε,ft

)
, Vi > ki

2. Simplifying the Exponent

Expand the exponent:

− V 2
i

2σ2
x,ft

− (ri − Vi)2

2σ2
ε,ft

= − V 2
i

2σ2
x,ft

− r2
i − 2riVi + V 2

i

2σ2
ε,ft

Combine terms:

= −
(

V 2
i

2σ2
x,ft

+ V 2
i

2σ2
ε,ft

− riVi

σ2
ε,ft

+ r2
i

2σ2
ε,ft

)

Define σ2 = σ2
x,ft + σ2

ε,ft. Then:

1
2σ2

x,ft

+ 1
2σ2

ε,ft

= 1
2σ2

So the exponent becomes:

−
(

V 2
i

2σ2 − riVi

σ2
ε,ft

+ r2
i

2σ2
ε,ft

)
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3. Completing the Square

Focus on the Vi terms:
V 2

i

2σ2 − riVi

σ2
ε,ft

= 1
2σ2

(
V 2

i − 2 σ2ri

σ2
ε,ft

Vi

)

Complete the square:

V 2
i − 2 σ2ri

σ2
ε,ft

Vi =
(

Vi − σ2ri

σ2
ε,ft

)2

−
(

σ2ri

σ2
ε,ft

)2

Thus the exponent can be written as:

− 1
2σ2

(
Vi − σ2ri

σ2
ε,ft

)2

+ (terms in ri only)

These ri-only terms are constants with respect to Vi and can be absorbed into the normalization.

4. Conditional Density Function

After completing the square, the conditional density f(Vi | ri) is proportional to:

f(Vi | ri) ∝ exp
(

−(Vi − µ∗)2

2σ∗2

)
, Vi > ki,

where

µ∗ =
σ2

x,ft

σ2 ri = δiri,

and

σ∗2 =
σ2

x,ftσ
2
ε,ft

σ2 = δiσ
2
ε,ft

Here,

δi =
σ2

x,ft

σ2
x,ft + σ2

ε,ft

Thus, f(Vi | ri) is a normal density N(µ∗, σ∗2) truncated at Vi > ki
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5. Conditional Expectation

For a truncated normal N(µ∗, σ∗2) truncated at Vi > ki, the expectation is:

E[Vi | ri] = µ∗ + σ∗
ϕ
(

ki−µ∗

σ∗

)
1 − Φ

(
ki−µ∗

σ∗

) ,

where ϕ(·) is the standard normal PDF and Φ(·) is the standard normal CDF.

Define:

Ri = ki − µ∗

σ∗

Then:

E[Vi | ri] = µ∗ + σ∗ ϕ(Ri)
1 − Φ(Ri)

6. Final Formula

Substitute back µ∗ = δiri and σ∗ =
√

δiσε,ft:

E[Vi | ri] = δiri +
√

δiσε,ft

ϕ
(

ki−δiri√
δiσε,ft

)
1 − Φ

(
ki−δiri√

δiσε,ft

)
Interpretation

• δi = σ2
x,ft

σ2
x,ft

+σ2
ε,ft

is the signal-to-noise ratio, representing the fraction of variance from the incum-

bents’ private value.

• Ri = ki−δiri√
δiσε,ft

is the standardized truncation point.

• The ratio ϕ(Ri)
1−Φ(Ri) adjusts the expected value to account for the truncation at Vi > ki.
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D Correlation Table

Table D.1: Correlation Matrix of Key Variables
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Acq. price P 1.000
Exp. return vi -0.063 1.000
Acq. surplus Vi 0.014 0.069 1.000
Joint surplus Vt 0.866 -0.019 0.513 1.000
Startup capture λs 0.110 -0.389 -0.311 -0.061 1.000
VC,PE invest. 0.367 -0.039 0.003 0.316 0.056 1.000
Acq. mkt cap 0.118 -0.002 0.891 0.547 -0.260 0.038 1.000
Science startup 0.081 -0.006 -0.005 0.067 0.060 0.025 0.012 1.000
Potential acquirers -0.030 0.006 0.065 0.006 -0.072 -0.013 0.083 -0.436 1.000

E Classifying Science-Based Startups with a Large Language Model

In this section, I describe in more detail how I construct and validate the classification of science-

based startups—that is, whether a startup’s products, services, or technologies rely on novel scientific

research at the time of founding. This classification serves as a main input throughout the empirical

analysis. The objective is to distinguish ventures grounded in scientific advances in the natural

sciences or engineering from those commercializing either non-technological offerings or standard

technologies, such as basic software, incremental product improvements, or technologies that were

already widely adopted by the time the firm was founded. To that end, I use a large language model

(LLM) to read unstructured descriptions of each startup and return a structured assessment. This

approach yields a classification methodology that is replicable, consistent across cases, and scalable

to large samples. Furthermore, for studying startups and as I show below, using unstructured text

together with a large language model produces more accurate classifications than commonly used

alternatives, such as indicators based on patent filings or scientific publications.

E.1 Methodology

Each classification is based on two inputs: (1) the founding year of the startup and (2) a block of

descriptive text, which may include the company’s website, news coverage, and SEC filings. The

model is instructed to evaluate whether the technology was based on scientific advances that were
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still novel at the time of founding—not merely whether it was once novel, or is considered high-tech

today. The model’s output is structured, requiring to return a JSON object that contains exactly

three fields:

• A score from 1 (very unlikely to be science-based) to 5 (very likely),

• A confidence level between 0 and 100, and

• A short reasoning string summarizing the evidence behind the classification.

Model and Inference Setup. To generate the classifications, I use the Llama 3.3 70B Instruct

model, developed by Meta and released in December 2024. This is an open-weight, instruction-tuned

model that accepts long inputs (up to 128,000 tokens), allowing it to read both the full evidence

block and the detailed instructions in a single pass. I run the model using Ollama, which serves the

model locally loaded through a simple API.76 All inference is performed on a single NVIDIA A100

80GB GPU, which supports the memory demands of this model and context length.

While proprietary models such as OpenAI’s GPT-4 (used in ChatGPT) or Anthropic’s Claude 3

are also competitive in language understanding and reasoning tasks, Llama 3.3 70B performs com-

parably across many benchmarks and offers full transparency, reproducibility, and local deployment

options. This is especially useful in academic settings, where control over the model environment,

inference process, reproducibility, computational costs, and data access is critical. Moreover, the abil-

ity to run inference without API constraints enables fine-grained experimentation, such as schema-

constrained decoding and automated retries, which are important for structured classification tasks

like this one.

Each input to the model includes (1) a system prompt, which defines what constitutes a science-

based innovation and how the founding year should affect the judgment (see the full prompt below),

and (2) a user message containing the startup’s founding year and descriptive text. The prompt

explicitly instructs the model to return only a JSON object in a fixed format. To ensure consistency

and ease of downstream processing, I enable Ollama’s built-in JSON mode by setting format="json"

in the API call. This ensures that the model is constrained to return a valid JSON object. On the

receiving end, I use a typed schema validator to check the output, verifying that the score is one of

the five allowed integers, that the confidence is a number between 0 and 100, and that no additional

text is present within these fields. If the output is malformed, I automatically send one retry prompt

asking the model to reformat its response.
76Ollama is an open-source tool that provides a local interface to run large language models like Llama 3, exposing

a lightweight HTTP API that simplifies integration into Python or other environments. It supports custom decoding
strategies (e.g., grammar-constrained output) and can operate entirely on local infrastructure.
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All runs are done with deterministic decoding: temperature is set to zero, and all other parameters

are fixed. This ensures that the same input always yields the same classification, which is important

for reproducibility.

Prompt. The design of the prompt emphasizes temporal grounding: the model is instructed to

assess whether the startup’s technology depended on scientific work that was still novel at the time

of founding. This avoids labeling as “science-based” those ventures that commercialize technologies

that were once cutting-edge but had become widely adopted or commoditized by the time the firm

entered. This distinction is important for my empirical strategy, which focuses on how the structure

of commercialization markets affects value capture for new science. To support robustness and val-

idation, I log the prompt, model version, and decoding parameters for each call. I also retain the

model’s reasoning field to enable human audits and interpretability. The prompt follows:

You are an expert in assessing science-based innovations. Your task is to evaluate

whether the technology commercialized by a startup substantially relies on novel

scientific innovations at the time of its founding. You will receive two inputs:

1. Startup Description: Unstructured text containing detailed information about a startup

, including a description and unstructured text from its website, news coverage, and

SEC filings. Carefully analyze all provided text to determine if the startups

technology is based on innovations based on recent scientific advances. Make use of

your long context window to analyze all the text.

2. Founding Year: An integer indicating the year the startup was founded.

Definition (Science-Based Innovations):

Science-based innovations significantly depend on the development and application of

novel scientific advances typically emerging from life sciences, chemistry, physics,

computer science, or engineering. Unlike incremental improvements or straightforward

technological applications, science-based innovations represent substantial

breakthroughs that meaningfully expand scientific knowledge and introduce novel

solutions to previously unsolved or complex problems. Such innovations usually result

from extensive research and development (R&D), involve specialized expertise, and

require rigorous validation before commercialization. A science-based startup

transforms such scientific discoveries (regardless of whether they originate

internally or externally) into commercially viable products, services, or processes.
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Clarification on Technological Innovations:

1. Clearly Non-Scientific Innovations: Examples include standard software applications,

consumer apps, basic hardware such as most wearables, or incremental improvements to

existing devices.

2. Clearly Scientific Innovations: Innovations involving cutting-edge or novel

applications such as advanced biotechnology and pharmaceuticals, LiDAR navigation

systems, groundbreaking battery chemistries, novel weaponry, or completely new

materials and processes.

3. Borderline Cases: Certain technologies, like drones or robotics, may or may not be

science-based. If a drone technology involves novel sensor systems, advanced LiDAR

navigation, innovative propulsion methods, or revolutionary battery technologies at

the time of founding, it should be classified as science based. However, if it merely

provides incremental features, improved usability, or integrates existing

commoditized components without substantial novel scientific breakthroughs, it should

not be classified as science based.

Temporal Context (IMPORTANT):

Assess strictly based on whether the startups technology represented a scientific

innovation at the specific time it was founded. Technological innovations built upon

previously scientific advances that had become commoditized by the founding year

should not be considered science based. Consider only the state of scientific

innovation as of the founding year. For instance, Google’s PageRank would qualify as

a scientific innovation in 1999 but likely would not by 2024 standards.

Your Task:

Evaluate the startup based strictly on the criteria above, returning the evaluation

exclusively in the following JSON structure:

{

"score": <integer from 1 to 5>,

"confidence": <numeric confidence score (0-100)>,

"reasoning": "<concise explanation explicitly referencing key evidence from the

description and clearly linking your assessment to the scientific context at the
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founding year>"

}

Explanation of Scores:

Score (1-5):

1: Very low likelihood of being science-based.

2: Low likelihood of being science-based.

3: Moderate likelihood of being science-based.

4: High likelihood of being science-based.

5: Very high likelihood of being science-based.

Confidence (0-100): Explicitly indicate your certainty in your score. Use lower values if

evidence is unclear or insufficient.

Provide no additional text outside the JSON structure.

E.2 Classification Results

Table E.1 summarizes the distribution of LLM-based science classification scores across the sample.

The classification is discrete, taking integer values from 1 to 5, with 1 indicating a very low likelihood

that the startup relies on scientific research and 5 indicating a very high likelihood. The distribution is

notably skewed, with over 70% of startups receiving a score of 1, suggesting that the majority of firms

in the sample do not commercialize products or services based on recent scientific advances. This is

consistent with expectations, given that most startups operate in sectors like software, services, or

low-tech consumer products where scientific content is minimal or absent.

Importantly, approximately 19% of ventures are classified as likely or very likely to be science-

based (receiving scores of 4 or 5). These firms are concentrated in sectors such as biotechnology,

advanced manufacturing, materials science, energy, and semiconductors. In contrast, no startups

in the consumer and business products and services category receive scores in this upper range,

and only 18 software startups are classified as science-based. These software firms tend to fall

into two specific groups: either early-stage startups from the early 2000s developing foundational

software technologies, or more recent ventures focused on artificial intelligence and machine learning

research.77

77This pattern raises a broader question about the role of scientific innovation in consumer-facing markets. If no
startups in consumer products are classified as science-based, does that imply that science-based consumer innova-
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Table E.1: LLM-based classification of startups
by their reliance on scientific research. Scores
range from 1 (very unlikely to be science-based)
to 5 (very likely). The distribution is grouped
into three meaningful bands: Low (1), Border-
line (2-3), and High (4–5). This structure is
used in subsequent empirical analysis to test
robustness to classification thresholds.

Score Frequency Percent Cumulative
1 4,350 70.74% 70.74%
2 308 5.01% 75.75%
3 301 4.90% 80.65%
4 978 15.91% 96.55%
5 212 3.45% 100.00%

This pattern is also visible in the kernel density plot (Figure E.1), which reveals a secondary

mode around score 4. The bimodal shape of the distribution suggests that the classifier is not simply

assigning noise or reacting to superficial features in the text, but is instead identifying meaningful

variation in the underlying scientific content of the startups’ technologies. The presence of two well-

separated regions in the distribution—a dominant mass near score 1 and a smaller but pronounced tail

near scores 4 and 5—is consistent with the underlying binary distribution assumed in the classification

task.

Finally, 11% of firms receive scores of 2 or 3, reflecting borderline or ambiguous cases. Within this

11%, 48% are startups in energy, hardware, industrials, manufacturing, materials, or semiconduc-

tors, and another 33% are in life sciences. These sectors are often science-adjacent but heterogeneous:

many firms in these categories commercialize technologies that rely on engineering or scientific in-

frastructure, but not necessarily on novel or non-commoditized discoveries at the time of founding.

However, this pattern also implies that the overall classification results may be sensitive to how bor-

derline cases are handled. Because these intermediate scores are concentrated in technically intensive

sectors, small changes in classification thresholds could meaningfully affect the composition of the

science-based sample (see next section for robustness analyses to account for these borderline cases).

Based on the distribution of scores and the underlying classification logic, I define startups as

science-based if they receive a score of 4 or 5 from the language model, and non-science-based

tion is rare, or simply not pursued through startups? It is possible that firms commercializing scientific advances
in consumer markets—such as novel materials in wearables, biomedical sensors, or advanced food technologies—are
more often large incumbents or vertically integrated manufacturers. This suggests a potential asymmetry in how
science reaches different end users: new scientific breakthroughs may diffuse into consumer markets, but not through
entrepreneurial entry. Instead, incumbents may be better positioned to absorb and scale these innovations, partic-
ularly when manufacturing, regulatory, or distribution capabilities are required. Identifying concrete examples of
science-based consumer innovations outside the startup ecosystem (e.g., Apple Watch blood oxygen sensors, Nestle’s
food tech R&D) could help clarify whether this absence in the startup sample reflects a market structure issue, a
classification problem on the LLM side or on the industry side, or a broader innovation pattern.
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Figure E.1: Kernel density estimate of LLM-based science classification scores. The distribution exhibits two distinct
regions: a dominant mode near score 1, corresponding to startups unlikely to rely on scientific research, and a
secondary mode near score 4, indicating a smaller but concentrated group of science-based ventures. The bimodal
shape suggests that the classifier is capturing meaningful variation in the underlying technological content of startups,
rather than assigning noise.

otherwise. This threshold reflects a conservative classification strategy: only firms with strong,

clear indications of reliance on novel scientific research are labeled as science-based. The intent

is to reduce false positives—cases where general technical language or sector affiliation might be

mistaken for genuine scientific content. This definition aligns with the conceptual goal of identifying

ventures that meaningfully depend on scientific advances, rather than on engineering implementation,

commoditized technologies, or abstract language. Thus, the results featured throughout the main

analysis in this paper use this binary 4–5 cutoff as the primary science indicator.

E.3 Sensitivity of Main Results to Science-Based Classification Cutoffs

Nonetheless, it is important to acknowledge that the classification is not inherently binary, and that

intermediate scores may contain meaningful information or reflect potential misclassifications. This

section investigates whether the empirical results are robust to reasonable variations in the threshold

used to classify startups as science-based. As discussed earlier, there are two conceptual challenges

that motivate this analysis. First, any automated classification—particularly one using a language

model to interpret unstructured descriptions—inevitably carries some degree of measurement error.

Second, and more importantly, the concept of “science-based” is not inherently binary. Even if

classification were perfect, it would still represent a latent continuous trait: some startups are clearly

rooted in novel scientific research, others are not, and many fall somewhere in between. In this

context, any binary cutoff—though helpful for interpretation and tractability—is a simplification.

These considerations motivate a set of robustness checks designed to evaluate the sensitivity of
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the main results to the specific threshold chosen. In particular, I explore how the results change

when (i) expanding the science-based category to include borderline cases, and (ii) leveraging the

full ordinal score produced by the classifier rather than imposing a binary split. These analyses serve

both as a test of robustness and as a way to assess whether the classifier captures a meaningful

gradient of science intensity.

These alternative specifications are reported in Table E.2. As shown in those results, the main

findings of the paper are stable: the sign, magnitude, and significance of the coefficients on value

capture and value creation do not meaningfully change across classification schemes. This suggests

that the empirical conclusions are not driven by the specific treatment of ambiguous cases and are

robust to reasonable variations in the science definition.

Table E.2: This table evaluates the sensitivity of the main results to different thresholds for defining
a startup as science-based. Columns (1) and (4) reproduce the baseline specification used in the main
analysis of the paper, which classifies startups with LLM-assigned scores of 4 or 5 as science-based,
in a binary variable (Tight Binary [4,5]). Columns (2) and (5) apply a looser threshold, expanding
the science-based group to include startups with scores of 2 to 5—adding 609 ambiguous cases (Loose
Binary [2,5]). As expected, coefficients are smaller, but the effects remain statistically and directionally
consistent. Columns (3) and (6) use the full 1–5 discrete, ordinal score, instead of a binary variable
(Discrete [1,5]). In both dependent variables—value capture and creation—results remain in line with
the main findings. All models include industry-year and startup country fixed effects.

Value Capture Value Creation
(1) (2) (3) (4) (5) (6)

Tight Binary [4,5] -0.147*** 0.180***
(0.023) (0.034)

Loose Binary [2,5] -0.072*** 0.074*
(0.012) (0.040)

Discrete [1,5] -0.029*** 0.102***
(0.006) (0.016)

Constant 0.610*** 0.603*** 0.632*** 18.633*** 18.646*** 18.490***
(0.003) (0.002) (0.008) (0.005) (0.009) (0.024)

Industry × Year FE Y Y Y Y Y Y
Country FE Y Y Y Y Y Y
Observations 5,823 5,823 5,823 5,823 5,823 5,823
R2 0.057 0.054 0.054 0.095 0.095 0.096

Standard errors clustered at the industry-year and country level.
* p<0.1, ** p<0.05, *** p<0.01

When using the binary classification with a strict threshold (scores 4 or 5), the estimated coef-

ficients are large, statistically significant, and substantively meaningful—these are the main results

reported in the paper. In columns (2) and (5), I broaden the science-based category to include all

startups with scores of 2 or higher. This more inclusive threshold brings an additional 609 startups
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into the science-based group, many of which are borderline or ambiguous cases. As expected, the

estimated effects are attenuated: the coefficients fall between 50% and 60%, to 0.072 (column (2))

and 0.074 (column (5)). Nonetheless, both remain statistically significant. This pattern is consistent

with a dilution effect. Under a looser definition, the science-based group likely includes ventures

in science-adjacent sectors or those that use technical language but are not meaningfully driven by

new scientific discoveries. Consequently, the differences in value creation and capture become more

muted.

More formally, relaxing the classification threshold reduces the likelihood of false negatives—

startups that are in fact science-based but receive a low score under the strict criterion. This improves

recall and reduces type II error, which is desirable from the perspective of inclusive measurement.

However, this comes at the cost of introducing false positives—startups that are not truly science-

based but now fall above the threshold. This inflates the treatment group with firms that do not share

the core scientific characteristics of interest, leading to attenuation bias in the estimated coefficients.

The treatment effect is diluted, as the average within-group difference between science and non-

science-based startups now narrows.

This mechanism helps explain the observed reduction in coefficient magnitudes when shifting

from a strict (scores 4–5) to a loose (scores 2–5) binary split. Given that scores of 2 and 3 collec-

tively account for 609 startups—more than a 40% increase in the number of “treated” units—this

redefinition significantly alters the composition of the science-based group. The resulting estimates

remain statistically significant and directionally consistent, suggesting the core effect is robust, but

the average treatment effect (not causal) weakens due to the inclusion of borderline cases. Still,

the fact that coefficients remain significant under both definitions reinforces the main empirical con-

clusion: startups with meaningful scientific content—however defined—perform differently on key

commercialization dimensions, especially in their ability to generate value and capture rents.

Finally, columns (3) and (6) use the full 1–5 ordinal score as a continuous regressor. The results

continue to show significant effects in the expected direction, providing further evidence that the

classifier captures a structured and meaningful signal rather than noise. Furthermore, in this case,

the magnitude of the coefficients is closer to that of the main binary variable. For example, in column

(3), the coefficient on the ordinal science score is 0.029. This is broadly consistent with the binary

effect in column (1), where the estimated coefficient is 0.147. Most startups classified as non-science

have a score of 1, while science-based startups are concentrated at scores 4 and 5. Therefore, moving

from a score of 1 to 4 corresponds to a four-times increase on the ordinal scale. Multiplying the

ordinal coefficient by this gap (0.029 × 4) yields an implied effect of roughly 0.116—still slightly
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smaller, but approaching the binary estimate of 0.147. The gap is expected, as the ordinal regression

distributes effects more continuously across the scale, while the binary split isolates the upper tail.

Taken together, these results underscore the robustness of the main findings to alternative oper-

ationalizations of science intensity. While the binary indicator based on scores 4–5 is intuitive and

useful for exposition, the results hold under both a looser binary threshold (scores ≥ 2) and when

using the full 1–5 ordinal score as a continuous variable. Importantly, the coefficient estimates remain

statistically significant and directionally consistent across specifications. The continuous specifica-

tion, in particular, lends further support to the validity of the classification: it captures a meaningful

gradient in science reliance, and the estimated coefficients are of comparable magnitude to the binary

model when interpreted over relevant score ranges.

E.4 Robustness of Science-Based Classification to Prompt Variations

In additional analyses not reported in the manuscript, I test the robustness of the science-based

classification to changes in prompt design. Specifically, I assess whether the LLM-based scores are

sensitive to variations in wording, structure, framing, and the temporal reference point used in the

prompt. To do so, I follow best practices from the prompt engineering literature and adopt a strategy

similar to that of Carlson and Burbano (2024), who show that prompt format can meaningfully

influence downstream inferences in large-scale classification tasks. In particular, I systematically

vary three dimensions of the prompt to evaluate the sensitivity of the resulting classifications.

First, I generate multiple alternative prompts using LLMs themselves, each reformulating the core

task—assessing whether a startup’s technology relies on novel scientific advances—using different

phrasings, clarifying instructions, and types of examples. This includes both more concise and more

verbose versions of the prompt, slight changes in the definition of “science-based” innovations (e.g.,

emphasizing novelty vs. research intensity), and alterations in the granularity of examples provided

for borderline cases. Second, I vary how temporal context is introduced into the prompt. The baseline

specification evaluates scientific novelty as of the startup’s founding year. I test the sensitivity of

results to shifting this reference point to the year of acquisition, acknowledging that what constitutes

science may vary over time, especially when the time to exit is large. Third, I explore structurally

distinct prompt templates.

Across all these variations, the results are remarkably stable. The classification distribution barely

shifts, and the correlation of alternative score vectors with the baseline exceeds 0.90 in many cases.

The set of ventures classified as science-based (scores 4–5) is virtually unchanged. As such, while

the main results rely on a single prompt for simplicity and replicability, the broader classification
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exercise appears robust to reasonable changes in prompt design and framing.

E.5 Benchmarking the LLM-Based Classification with Patent and Publication

Data

While the LLM-based classification demonstrates strong empirical performance in predicting dif-

ferences in science reliance, it is useful to assess whether the score aligns with more conventional

indicators of scientific content. Beyond manual validation—where I read and inspect the model’s

outputs and reasoning chains for selected startups—I conduct a systematic external assessment ex-

ercise using established innovation metrics: patents and scientific publications. This allows me to

assess whether the LLM score correlates with observable and widely used science-linked outputs at

scale.

Before presenting the results, it is worth revisiting why patent and publication data are not used as

the primary classification input in this study. Patents and publications data remain foundational and

very useful in innovation research and are widely used to track technological and scientific activity.

However, their limitations become particularly salient when applied to startups, where such indicators

often fail to reflect the underlying reliance on science. Many early-stage firms choose not to patent,

even when their technologies are patentable, due to the high costs of filing and, more importantly,

enforcing intellectual property rights—costs that are especially burdensome for resource-constrained

ventures (Graham et al., 2009; Bryan and Williams, 2021). Instead, startups often rely on secrecy,

speed, or first-mover advantages to protect their knowledge (Lerner and Seru, 2022). Furthermore,

even when patents do exist, they may formally be held by inventors, universities, or venture capital

firms, rather than the startup itself, complicating the task of linking IP to specific firms. Publications

pose similar challenges: coverage is sparse, and affiliations are often misreported or missing entirely.

Despite these limitations, patent and publication data remain valuable for benchmarking the

LLM classifier—especially for the subset of startups where reliable matches can be established. To

do so, I evaluate the extent to which high LLM scores are associated with greater patenting activity

and stronger linkages to science via patent-to-paper citations. I match startups to patents using the

procedure developed in Nagar et al. (2024), which handles entity disambiguation and name variation

in startup records. Patent-to-paper citations are derived using the dataset from Marx and Fuegi

(2020), allowing me to trace the scientific roots of patented inventions.

As posed, the issues with patents identify science startups are non-trivial. For example, upon

visual inspection, in my sample of 5,823 startups, 734 operate in Biotechnology—a domain with

high patent propensity—yet only 417 of these (56.8%) are successfully matched to patents. The
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remaining 317 biotech firms (43.2%) have no patent records despite many being acquired by major

pharmaceutical incumbents like Pfizer and Novartis, often for hundreds of millions of dollars. Indeed,

manual inspection reveals that these firms are scientifically sophisticated and actively engaged in

research. Their lack of patents reflects data incompleteness, not an absence of science. Thus, as

posed, the LLM-based measure helps overcome this limitation.

Formally, I assess the external validity of the LLM-based science score using OLS regressions,

with results presented in Table E.3. The aim is not to treat patents or publications as a definitive

“ground truth”, but rather to test for convergence: do startups that receive higher science intensity

scores from the LLM also exhibit observable scientific activity, such as holding more patents or citing

academic research in those patents? Across all specifications, the LLM-based score is strongly and

significantly associated with both the number of patents and the volume of patent-to-paper citations.

These relationships hold even after controlling for year, country, and—under stricter specifications—

industry-year fixed effects. This provides robust evidence that the classifier is capturing a meaningful

signal consistent with conventional bibliometric indicators, while offering broader coverage and finer

granularity, particularly in the startup context where standard metrics are often missing or incom-

plete.

Columns (1)–(4) regress the LLM-based science score on patent-based measures across two sam-

ples: the full sample of startups (Columns 1–2) and the subset of firms matched with at least one

patent (Columns 3–4). Across both samples, the results indicate a robust positive association be-

tween the LLM score and the log number of patents as well as log patent-to-paper citations, with

all coefficients statistically significant. For instance, in column (1), the coefficient on the log patent

count is 0.242, while in column (2), the coefficient on patent-to-paper citations is 0.246. These mag-

nitudes are economically meaningful and suggest that startups classified as more science-intensive

by the LLM tend to hold more extensive patent portfolios, with patents that more heavily draw on

scientific research. The estimates remain positive and significant in the restricted sample of patenting

startups.

In Panel B of Table E.3, I introduce industry-by-year fixed effects to account for cross-industry

variation. That is, I estimate the relationship within industry-year cells, which provides a stricter

test of the model’s explanatory power by comparing startups operating in similar technological

and temporal contexts. The results remain robust. The LLM score continues to be significantly

associated with both patenting activity and patent-to-paper citations when using the full startup

sample (columns (1) and (2)). In the restricted sample of “patenting startups” (columns (3) and (4)),

the coefficient on patent count remains positive and significant, even after conditioning on industry
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Table E.3: Startup reliance on science: LLM-based measure vs. patent-based measures.

Panel A: Specifications Without Industry Fixed Effects

Sample: All Startups Sample: Patenting Startups
(1) (2) (3) (4)

Patent count (log) 0.242∗∗∗ 0.177∗∗∗

(0.010) (0.011)
Patent-paper cites (log) 0.246∗∗∗ 0.104∗∗∗

(0.014) (0.015)
Constant 1.481∗∗∗ 1.701∗∗∗ 1.692∗∗∗ 2.076∗∗∗

(0.010) (0.002) (0.025) (0.005)
Year FE Yes Yes Yes Yes
Industry × Year FE No No No No
Country FE Yes Yes Yes Yes
N 6,133 6,133 2,760 2,760
R2 0.111 0.043 0.072 0.043

Panel B: Specifications With Industry × Year Fixed Effects

Sample: All Startups Sample: Patenting Startups
(1) (2) (3) (4)

Patent count (log) 0.064∗∗∗ 0.033∗∗∗

(0.002) (0.008)
Patent-to-paper cites (log) 0.039∗∗∗ 0.000

(0.007) (0.012)
Constant 1.671∗∗∗ 1.734∗∗∗ 2.035∗∗∗ 2.114∗∗∗

(0.000) (0.001) (0.018) (0.003)
Year FE No No No No
Industry X Year FE Yes Yes Yes Yes
Country FE Yes Yes Yes Yes
N 6,114 6,114 2,738 2,738
R2 0.625 0.620 0.634 0.632

Panel A clusters standard errors at the Year and Country level.
Panel B clusters standard errors at the Industry-Year and Country level.
* p<.1, ** p<.05, *** p<.01

and year. However, the coefficient on patent-to-paper citations becomes statistically insignificant.

This attenuation is not surprising: once conditioning on industry-year, there is limited residual

variation in citation intensity across startups that all already hold patents. Moreover, patent-to-

paper citation data is noisier and less comprehensive at the firm level, and its distribution is highly

skewed. To illustrate these results, Figure E.2 plots the correlation between the LLM-based science

score and the log number of patent-to-paper citations, without the industry fixed effects (Panel A,

column (4)). The figure reveals a strong and approximately linear relationship: startups with higher
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LLM-assigned science scores tend to have a greater volume of scientific citations embedded in their

patents. This pattern reinforces the view that the classifier captures meaningful underlying scientific

content.
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Figure E.2: Correlation between reliance on science measures: LLM vs. patent to paper cites.

Taken together, these results suggest that the LLM-based measure of science reliance is well-

aligned with standard indicators and can serve as a valid proxy for scientific content at scale. Impor-

tantly, the measure retains explanatory power even in specifications that control tightly for industry

and temporal heterogeneity. The consistent statistical significance of the coefficients across specifi-

cations reinforces the notion that the LLM classifier is not simply replicating patent-based signals

but rather identifying structured, granular information embedded in unstructured textual data.

Moreover, given the known limitations of patent data for startups—such as under-patenting

and measurement error—the LLM-based approach offers a scalable and potentially more inclusive

alternative. This is particularly relevant when trying to capture early-stage or non-traditional forms

of measuring scientific innovation that may not be reflected in patent records.
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